From farmers to bioengineers: Sowing genes, harvesting molecules

Authors

DOI:

https://doi.org/10.7203/metode.11.15601

Keywords:

new plant breeding technologies, genetic editing, synthetic biology, biofactory plants

Abstract

Twenty-first-century agriculture faces major challenges that urgently need to be answered. In the last decade, new breeding technologies have been developed that can help meet these challenges. These technologies are not only more accurate and efficient, but are also simpler and more accessible, which will facilitate the progressive democratisation of agricultural biotechnology. In this text we discuss future agricultural development in terms of technological democratisation and regulatory relaxation. In this scenario one would expect an increase in the diversity of cultivated varieties and species, the strong development of biofactory crops and, in the long term, the emergence of increasingly fit «smart» crops.

Downloads

Download data is not yet available.

Author Biography

Diego Orzáez, Institute for Plant Molecular and Cellular Biology (IBMCP

Researcher at the Institute for Plant Molecular and Cellular Biology (IBMCP, CSIC-UPV, Spain). His PhD focused on programmed cell death in plants. Shortly thereafter he joined the Wageningen University (the Netherlands) as a Marie Curie postdoctoral researcher. There, he studied the design of plants as biofactories to produce antibodies. He currently co-leads the IBMCP’s Plant Genomics and Biotechnology Lab where he continues to work on the development of genetic engineering and synthetic biology tools to design biofactory plants that can produce valuable substances to be used in fields such as medicine or pharmaceuticals.

References

Barton, K. A., Binns, A. N., Matzke, A. J., & Chilton, M. D. (1983). Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell, 32(4), 1033–1043. http://doi.org/10.1016/0092-8674(83)90288-x

Engler, C., Kandzia, R., & Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLOS ONE, 3(11), e3647. http://doi.org/10.1371/journal.pone.0003647

FAO. (2018). The future of food and agriculture: Alternative pathways to 2050. Food and Agriculture Organitzation of the United Nations. http://www.fao.org/3/I8429EN/i8429en.pdf

Fuentes, I., Stegemann, S., Golczyk, H., Karcher, D., & Bock, R. (2014). Horizontal genome transfer as an asexual path to the formation of new species. Nature, 511(7508), 232–235. http://doi.org/10.1038/nature13291

Herrera-Estrella, L., Depicker, A., Van Montagu, M., & Schell, J. (1983). Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature, 303, 209–213. http://doi.org/10.1038/303209a0

Khan, M. Z., Zaidi, S. S., Amin, I., & Mansoor, S. (2019). A CRISPR way for fast-forward crop domestication. Trends in Plant Science, 24(4), 293–296. http://doi.org/10.1016/j.tplants.2019.01.011

Lander, E. S. (2016). The heroes of CRISPR. Cell, 164(1-2), 18–28. http://doi.org/10.1016/j.cell.2015.12.041

Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(3), 733–740. http://doi.org/10.1099/mic.0.023960-0

Pillet, S., Aubin, É., Trépanier, S., Bussière, D., Dargis, M., Poulin, J.-F., Yassine-Diab, B., Ward, B. J., & Landry, N. (2016). A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clinical Immunology, 168, 72–87. http://doi.org/10.1016/j.clim.2016.03.008

Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J. B., Fausther-Bovendo, H., Wei, H., Aviles, J., Hiatt, E., Johnson, A., Morton, J., Swope, K., Bohorov, O., Bohorova, N., Goodman, C., Kim, D., Pauly, M. H., Velasco, J., … Kobinger, G. P. (2014). Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature, 514(7520), 47–53. http://doi.org/10.1038/nature13777

Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., … Jackson, S. A. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463, 178–183. http://doi.org/10.1038/nature08670

Stephan, A., Hahn-Löbmann, S., Rosche, F., Buchholz, M., Giritch, A., & Gleba, Y. (2017). Simple purification of Nicotiana benthamiana-produced recombinant colicins: High-yield recovery of purified proteins with minimum alkaloid content supports the suitability of the host for manufacturing food additives. International Journal of Molecular Sciences, 19(1), 95. http://doi.org/10.3390/ijms19010095

Vazquez-Vilar, M., Orzaez, D., & Patron, N. (2018). DNA assembly standards: Setting the low-level programming code for plant biotechnology. Plant Science, 273, 33–41. http://doi.org/10.1016/j.plantsci.2018.02.024

Wang, L., Jiang, S., Chen, C., He, W., Wu, X., Wang, F., Tong, T., Zou, X., Li, Z., Luo, J., Deng, Z., & Chen, S. (2018). Synthetic genomics: From DNA synthesis to genome design. Angewandte Chemie International Edition English, 57(7), 1748–1756. http://doi.org/10.1002/anie.201708741

Zsögön, A., Cermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., Freschi, L., Voytas, D. F., Kudla, J., & Peres, L. E. P. (2018). De novo domestication of wild tomato using genome editing. Nature Biotechnology, 36, 1211–1216. http://doi.org/10.1038/nbt.4272

font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:

Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;

mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;

mso-ansi-language:ES;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'>

style='mso-element:field-end'>

Downloads

Additional Files

Published

2021-01-21

How to Cite

Orzáez, D. (2021). From farmers to bioengineers: Sowing genes, harvesting molecules. Metode Science Studies Journal, (11), 31–37. https://doi.org/10.7203/metode.11.15601
Metrics
Views/Downloads
  • Abstract
    1002
  • Untitled (Español)
    0
  • PDF
    347

Issue

Section

The plants of the future. Genome editing in biotechnology

Metrics

Similar Articles

> >> 

You may also start an advanced similarity search for this article.