Beyond global warming: Stressed oceans, globe-wide in the Anthropocene

Authors

DOI:

https://doi.org/10.7203/metode.11.16830

Keywords:

Anthropocene, warming, acidification, deoxygenation, global change

Abstract

The footprint of human activities on the planet is so profound that many scientists are already suggesting that we have entered a new geological era, the Anthropocene. From among these activities, those that are accompanied by large emissions of carbon dioxide (CO2) affect our entire planet and, especially, the oceans. Besides becoming warmer, the oceans are also growing progressively more acidic and less oxygenated. In this article we discuss the extent of these global stresses on the oceans after contextualising the disproportionate anthropogenic increase in CO2 and examining how it is distributed. We conclude with a discussion of mitigation possibilities that use the oceans themselves, stressing the urgent need to tackle the problem, especially during this present decade.

Downloads

Download data is not yet available.

Author Biographies

Carles Pelejero, Institute of Marine Sciences of Barcelona (ICM-CSIC) (Spain).

ICREA Research Professor at the Institute of Marine Sciences of Barcelona (ICM-CSIC) (Spain). He is the coordinator of the Catalan Government’s Marine Biogeochemistry and Global Change research group and a member of the Group of Experts on Climate Change of Catalonia. His research, which covers disciplines such as paleo-climatology, paleo-oceanography, and marine chemistry, focuses on understanding and quantifying changes in climate and the marine environment, both now and in the past.

Eva Calvo, Institute of Marine Sciences of Barcelona (ICM-CSIC) (Spain).

Senior scientist at the Institute of Marine Sciences of Barcelona (ICM-CSIC) (Spain) and member of the Catalan Government’s Marine Biogeochemistry and Global Change research group. Her research includes the study of past climates and the relationship with atmospheric CO 2 variations and their impact on marine ecosystems, as well as the response and influence of the oceans on climate variability.

References

Alley, R. B. (2014). The two-mile time machine: Ice cores, abrupt climate change, and our future (Updated Edition). Princeton University Press.

Delmas, R. J., Ascencio, J.-M., & Legrand, M. (1980). Polar ice evidence that atmospheric CO2 20,000 yr BP was 50 % of present. Nature, 284, 155–157. https://doi.org/10.1038/284155a0

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., … Zaehle, S. (2019). Global carbon budget 2019. Earth System Science Data, 11, 1783–1838. https://doi.org/10.5194/essd-11-1783-2019

Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quéré, C., Raupach, M. R., Sharifi, A., Smith, P., & Yamagata, Y. (2014). Betting on negative emissions. Nature Climate Change, 4, 850–853. https://doi.org/10.1038/nclimate2392

GBRMPA. (2017). Final report: 2016 coral bleaching event on the Great Barrier Reef. GBRMPA (Great Barrier Reef Marine Park Authority). http://elibrary.gbrmpa.gov.au/jspui/bitstream/11017/3206/1/Final-report-2016-coral-bleaching-GBR.pdf

Global Carbon Project. (2019). Global carbon budget 2019https://www.globalcarbonproject.org/carbonbudget/19/files/GCP_CarbonBudget_2019.pdf

Gruber, N. (2011). Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1943), 1980–1996. https://doi.org/10.1098/rsta.2011.0003

Hoegh-Guldberg, O. (Coord.). (2019). The ocean as a solution to climate change: Five opportunities for action. World Resources Institutehttps://www.ourdynamicplanet.com/wp-content/uploads/2019/09/HLP_Ocean_Solution_Climate_Change.pdf

Höhne, N., den Elzen, M., Rogelj, J., Metz, B., Fransen, T., Kuramochi, T., Olhoff, A., Alcamo, J., Winkler, H., Fu, S., Schaeffer, M., Schaeffer, R., Peters, G. P., Maxwell, S., & Dubash, N. K. (2020). Emissions: World has four times the work or one-third of the time. Nature, 579, 25–28. https://doi.org/10.1038/d41586-020-00571-x

IPCC. (2018). Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, ... T. Waterfield (Eds.). IPCC. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf

IPCC. (2019). IPCC special report on the ocean and cryosphere in a changing climate. H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, ... N. M. Weyer (Eds.). https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf

Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., & Stocker, T. F. (2008). High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, 453, 379–382. https://doi.org/10.1038/nature06949

Machado, L., Magnusson, M., Paul, N. A., Kinley, R., de Nys, R., & Tomkins, N. (2016). Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology, 28, 1443–1452. https://doi.org/10.1007/s10811-015-0639-9

Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552–560. https://doi.org/10.1890/110004

Pelejero, C., Calvo, E., & Hoegh-Guldberg, O. (2010). Paleo-perspectives on ocean acidification. Trends in Ecology & Evolution, 25(6), 332–344. https://doi.org/10.1016/j.tree.2010.02.002

Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen content during the past five decades. Nature, 542, 335–339. https://doi.org/10.1038/nature21399

United Nations Environment Programme. (2019). Emissions gap report 2019. UNEP.

Yan, Y., Bender, M. L., Brook, E. J., Clifford, H. M., Kemeny, P. C., Kurbatov, A. V., Mackay, S., Mayewski, P. A., Ng, J., Severinghaus, J. P., & Higgins, J. A. (2019). Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature, 574, 663–666. https://doi.org/10.1038/s41586-019-1692-3

Downloads

Published

2021-01-21

How to Cite

Pelejero, C., & Calvo, E. (2021). Beyond global warming: Stressed oceans, globe-wide in the Anthropocene. Metode Science Studies Journal, (11), 165–171. https://doi.org/10.7203/metode.11.16830
Metrics
Views/Downloads
  • Abstract
    978
  • PDF
    446

Issue

Section

Oceans. The impact of global change on the sea

Metrics

Similar Articles

> >> 

You may also start an advanced similarity search for this article.