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■■ INTRODUCTION

In the last years, neural networks have resurfaced 
from their ashes, yielding impressive outcomes 
in tasks where traditional approaches were 
systematically underperforming (LeCun, Bengio, 
& Hinton, 2015). The reasons for this success are 
manifold, and they are still a matter of debate. Clearly, 
there are data and technological 
components that have decisively 
contributed, namely the 
availability of unprecedented 
volumes of data and the 
ubiquitous access to greater 
computing power. However, 
besides those more practical 
components, I would say it is 
safe to claim that one of the key 
enablers of the current success of neural networks has 
been the introduction of minor but significant «tricks 
of the trade». Some examples were the initialization 
of the neurons’ weights by unsupervised pre-training, 
the substitution of sigmoid activations by rectified 
linear units to alleviate the problem of vanishing 
gradients, or the systematic and extensive use of 
convolutional architectures to tackle translations 
while reducing the number of trainable weights.

Interestingly, a majority of these enabler tricks do 
not stem from a unified theory of neural networks nor 
from rigorous mathematical developments. Instead, 
they stem from intuition, empirical investigation 
and, ultimately, trial and error (or brute-force search). 
In this sense, deep learning research seems to 
follow Wolfram’s «new kind of science» paradigm 
(Wolfram, 2002), under which «the optimal design 

of [deep learning] systems 
can only be approached by a 
combinatorial search over the 
vast number of all possible 
[network] configurations». In fact, 
some researchers have directly 
embraced this mantra and 
started the search, with the help 
of automatic and/or structured 
methodologies to partially guide 

it. For example, Zoph and Le (2016) discover novel 
network configurations using evolutionary strategies. 

But the empirically-driven advancement of the 
field should not prevent the development of more 
formal theories (or proto-theories) that would 
allow us to comprehend what is going on and, 
eventually, provide a more holistic understanding 
of it. In particular, such understanding could take 
ground from a number of open issues or unintuitive 
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properties of neural networks that puzzle the research 
community (Larochelle, 2017). In the remaining of the 
article, I will present and try to briefly explain some of 
these unintuitive properties.

■■ NEURAL NETWORKS CAN MAKE DUMB ERRORS

It is now well known that neural networks can 
produce totally unexpected outputs from inputs with 
perceptually-irrelevant changes, which are commonly 
called adversarial examples. Humans can also be 
confused by «adversarial examples»: we all have 
seen images that we guessed were something (or a 
part of something) and later we were told they were 
not. However, the point here is that human adversarial 
examples do not correspond to those of neural 
networks because, in the latter case, they can be 
perceptually the same. Szegedy et al. (2014) showed 
that a network could misclassify an image by just 
applying «a certain hardly perceptible perturbation» 
to it. Not only that, but they also found that the 
same perturbation on that particular image caused 
misclassification even when the image was not in the 
training set, that is, when the network was trained 
with a different subset of images. Complementarily, 
Nguyen, Yosinski, and Clune 
(2015) showed that it is possible 
to produce artificial images that 
are completely unrecognizable by 
humans but that, nonetheless, deep 
neural networks believe to be real-
world recognizable objects with a 
99.99% confidence.

The problem of adversarial 
examples is interesting because 
they contradict one of the most 
renowned and extensively 
demonstrated qualities of neural 
networks: their large generalization capability (or, in 
other words, their outstanding performance on unseen 
data). Knowledge on possible adversarial attacks is 
increasing (Papernot et al., 2017), and with it, new 
techniques to tackle the problem appear. Incipient 
theories have arised, and recent work suggests that 
adversarial examples are directly related to model 
performance (Gilmer et al., 2018). However, to day, a 
general understanding of the phenomenon is missing.

■■ THE SOLUTION SPACE IS A MYSTERY

As with many other machine learning algorithms, the 
training of neural networks proceeds by finding a 
combination of numbers, called network parameters 

or weights, that yields the highest performance or, 
more properly, the minimum loss on some data. If we 
had only a single weight, training the network would 
consist in finding the value of that weight which 
results in the minimum loss of information. There are 
well known methodologies to find such a minimum 
for a few parameters with theoretical guarantees. 
However, deep neural networks are typically in the 
range of millions of parameters, for which a suitable 
combination that minimizes a certain loss must be 
found. The number of parameters per se would not 

be a serious problem if the loss 
was convex, that is, that it had a 
single minimum and that, roughly 
speaking, all strictly descending 
paths reached that minimum. 
However, this is not the case. The 
losses of current deep networks 
are non-convex, with multiple 
local minima.

In this scenario, there are not 
many theoretical guarantees 
about the ability of most known 
methodologies to find a good 

minimum (ideally the smallest minimum over all 
minima). In general, the loss landscapes induced by 
deep networks are totally unknown, and the explored 
fraction of the solution space is tiny. Apart from multiple 
local minima, loss landscapes are supposed to include 
saddle points (Dauphin et al., 2014) and other obstacles 
that theoretically hinder the «navigation» of current 
minimum-finding algorithms. Nonetheless, extremely 
basic minimum-finding algorithms reach good solutions; 
as good as to break the state-of-the-art in well-studied 
problems, and as to tackle newly proposed, previously 
unthinkable machine learning tasks. Why is that?

A common hypothesis is that the vast majority 
of local minima are almost of a similar loss, that is, 
all of them imply equally good solutions (Kawaguchi, 
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Artificial neural networks are modelled after the neural system of a 
biological brain. Each node in the structure represents one of the 
neurons located at different levels (input, hidden, and output layers) 
processing the «training» data in the deep learning process.

Adapted from Wikipedia
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Both artificial neural networks and the human mind can be confused by «adversarial examples», images we identify as something (or as a 
part of something) and are later found to be something else. However, an artificial network can misclassify an image just by applying some 
barely perceptible disturbance. In the picture, a collage inspired by the meme «chihuahua or muffin?» which gained popularity in 2016 as 
an example of the potential confusions affecting artificial intelligence neural networks.
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2016). Another hypothesis is that saddle points and 
other obstacles are not encountered during minimum 
search with current methods (Goodfellow, Vinyals, 
& Saxe, 2015). It is also very possible that some 
architectures or design priors introduce convexity (Li, 
Xu, Taylor, & Goldstein, 2017). All these could explain 
why random weight initializations, together with the 
simplest minimum-finding algorithms, actually work. 
In fact, such algorithms seem to perform best when 
badly conditioned, or when some noise is introduced in 
the process.

■■ NEURAL NETWORKS CAN EASILY MEMORIZE

Even a not-so-deep neural network belongs to the class 
of what is called universal function approximation 
algorithms (Cybenko, 1989). That means, in plain 
words, that neural networks have enough power 

The potential for compression of neural networks has obvious 
practical consequences, especially when the goal is to implement 
them in devices with limited resources, such as mobile phones, or 
systems with limited hardware, such as cars. In the picture, tests for 
an autonomous BMW car.
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to represent any data set. Recent work 
empirically shows that finite-sized networks 
can model any finite-sized data set, even if 
this is made of shuffled data, random data, 
or random labels (Zhang, Hardt, Recht, & 
Vinyals, 2017). This has the implication that 
neural networks can remember the labels of 
any training data, no matter the nature of that 
data. And remembering training data means 
performing with 100% accuracy on such data. 

What is not so obvious is that, still, if the 
data is not totally random, neural networks 
are totally capable of extrapolating their 
memories to unseen cases and generalize. 
Doing so when the number of model 
parameters is several orders of magnitude 
larger than the number of training instances 
is what is intriguing and not yet formally 
justified. It contradicts the classical machine 
learning rule of thumb to prefer simple 
models (in the sense of having few learnable 
parameters) in order to achieve good 
generalization capabilities. It also contradicts 
conventional wisdom that some more or less 
explicit form of irrelevant parameter pruning, 
commonly called regularization, should be 
employed when a model is much bigger than 
the number of training instances (Zhang et 
al., 2017).

■■ �NEURAL NETWORKS CAN BE 
COMPRESSED

Parameter pruning or explicit regularization 
is not needed for generalization. However, 

it is well known that one can drastically reduce the 
number of parameters of a trained neural network 
and still maintain its performance on both seen 
and unseen data (Han, Mao, & Dally, 2016). Even 
ensembles of neural networks can be «distilled» into 
a smaller network without a noticeable performance 
drop (Hinton, Vinyals, & Dean, 2014). In some cases, 
the amount of pruning or compression is surprising: 
up to 100 times depending on the data set and 
network architecture.

The possibility of severely compressing neural 
networks has obvious practical consequences, 
specially when such networks need to be deployed in 
low-resource devices, like mobile phones, or limited-
hardware systems, like cars. But besides practical 
considerations, it also poses several questions: do 
we need a large network in the first place? Is there 
some architecture twist that combined with current 

minimum-finding algorithms allows to discover good 
parameter combinations for those small networks? 
Or is it just a matter of discovering new minimum-
finding algorithms?

■■ �LEARNING IS INFLUENCED BY INITIALIZATION 
AND EXAMPLE ORDER

As with human learning, current network learning 
depends on the order in which we present the 
examples. Practitioners know that different sample 
orderings yield different performances and, in 
particular, that early examples have more influence on 
the final accuracy (Erhan et al., 2010). Furthermore, 
it is now a classic trick to pre-train a neural network 
in an unsupervised way or to transfer knowledge 
from a related task to benefit from additional sources 
(Yosinski, Clune, Bengio, & Lipson, 2014). In 
addition, it is easy to show that even though random 
initializations of the networks’ weights converge 
to a good solution, changing the initial weights’ 
distributions or the distributions’ parameters can 
affect the final accuracy or, in the worst case, just 
prevent the network to learn at all (LeCun, Bottou, 
Orr, & Müller, 2002). There is a lack of knowledge 
on mathematically-motivated initialization schemes, 
as well as on optimal orderings of training samples. 
A general theory seems difficult to find and, as the 
variety of neural network architectures grows every 
day, individual, mathematically-motivated policies 
struggle to catch up.

■■ �NEURAL NETWORKS FORGET WHAT THEY 
LEARN

In stark contrast to humans, neural networks forget 
what they learn. This phenomenon is known as 
catastrophic forgetting or catastrophic interference, 
and has been studied since the beginning of the 
nineties (McCloskey & Cohen, 1989). Essentially, 
when a neural network that has been trained for a 
certain task is reused for learning a new task, it 
completely forgets how to perform the former. Beyond 
the relatively philosophical objective of mimicking 
human learning and whereas machines should be 
able to do so or not, the problem of catastrophic 
forgetting has important consequences for the current 
development of systems that consider a large number 
of (potentially multimodal) tasks, and for those which 
aim towards a more general concept of intelligence. 
As for now, it looks unrealistic that such systems may 
be able to learn from all possible relevant data at once, 
or in a parallel fashion. 
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The Painting Fool. Uneasy, 2012. Digital image.
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With years, there have been various attempts to 
overcome catastrophic forgetting. Some of the most 
common strategies include the use of memories, 
rehearsal or «dreaming» parallels, attention 
strategies, or constraining the plasticity of neurons 
(Serrà, Surís, Miron, & Karatzoglou, 2018). In a more 
general vein, the problem of catastrophic forgetting 
may stem from the backpropagation algorithm itself, 
which represents the very essence of modern neural 
network training. Perhaps an elegant solution to the 
issue requires of a major rethinking of the current 
paradigm.

■■ CONCLUSION

It is interesting that a research field like deep learning, 
which drives such an enormous amount of attention 
(from academia to industry or the media), can present 
so many breakthroughs and, at the same time, so 
many puzzling situations. The state of the art may 
be quite ahead of the state of understanding, and this 
situation may continue like that for years. Nonetheless, 
it could also well be that even a minor theoretical 
advancement forces a paradigm shift that later 
fosters a more formal and mathematically-grounded 
approach to deep learning. Until then, empirical 
exploration will continue to be the major way through, 
and the main tool to bridge the gap between practice 
and understanding, remembering of the new kind of 
science approach.  
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