Plants on demand: Genome editing for plant improvement

Authors

  • Concha Gómez-Mena Institute for Plant Molecular and Cellular Biology (IBMCP, CSIC-UPV) in Valencia (Spain).

DOI:

https://doi.org/10.7203/metode.11.15507

Keywords:

crops, plant breeding, CRISPR/Cas9, genome editing

Abstract

The plants we eat are the outcome of a humans’ long history of domestication of wild species. The introduction of CRISPR/Cas gene-editing technology has provided a new approach to crop improvement and offers an interesting range of possibilities for obtaining varieties with new and healthier characteristics. The technology is based on two fundamental pillars: on the one hand, knowing complete genome sequences, and on the other, identifying gene functions. In less than a decade, the prospect of being able to design plants on demand is now no longer a dream, but a real possibility.

Downloads

Download data is not yet available.

Author Biography

Concha Gómez-Mena, Institute for Plant Molecular and Cellular Biology (IBMCP, CSIC-UPV) in Valencia (Spain).

Senior scientist at the Institute for Plant Molecular and Cellular Biology (IBMCP, CSIC-UPV) in Valencia (Spain). Her research focuses on the study of genetic and molecular mechanisms for the formation of seedless fruits. She also participates in projects related to the development of flowers and fruits in different crop species. She is currently the deputy director of Scientific Culture and Communication at the IBMCP.  

References

Beltrán, J. P. (2018). Cultivos transgénicos. CSIC-Los libros de la Catarata.

Biswal, A. K., Mangrauthia, S. K., Reddy, M. R., & Yugandhar, P. (2019). CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities. Seminars in Cell & Developmental Biology, 96, 100–106. http://doi.org/10.1016/j.semcdb.2019.04.005

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823. http://doi.org/10.1126/science.1231143

FAO. (1983). World food security: A reappraisal of the concepts and approaches. Food and Agriculture Organization of the United Nations.

FAO. (1999). Women: Users, preservers and managers of agrobiodiversity. Food and Agriculture Organization of the United Nations.

FAO, IFAD, & WFP. (2012). The state of food insecurity in the world. Food and Agriculture Organization of the United Nations.

Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Science of the USA, 109(39), E2579–2586. http://doi.org/10.1073/pnas.1208507109

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. http://doi.org/10.1126/science.1225829

Lander, E. S. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18–28. http://doi.org/10.1016/j.cell.2015.12.041

Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., & Gao, C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8, 14261. http://doi.org/10.1038/ncomms14261

Medina, M., Roque, E., Pineda, B., Cañas, L., Rodríguez-Concepción, M., Beltrán, J. P., & Gómez-Mena, C. (2013). Early anther ablation triggers parthenocarpic fruit development in tomato. Plant Biotechnology Journal, 11(6), 770–779. http://doi.org/10.1111/pbi.12069

Metje-Sprink, J., Menz, J., Modrzejewski, D., & Sprink, T. (2018). DNA-free genome editing: Past, present and future. Frontiers in Plant Science, 9, 1957. http://doi.org/10.3389/fpls.2018.01957

Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(Pt 3), 733–740. http://doi.org/10.1099/mic.0.023960-0

Mojica, F.J, & Montoliu, L. (2016). On the origin of CRISPR-Cas technology: From prokaryotes to mammals. Trends in Microbiology, 24(10), 811–820. http://doi.org/10.1016/j.tim.2016.06.005

Montoliu, L. (2019). Editando genes: recorta, pega y colorea. Las maravillosas herramientas CRISPR. Next Door Publishers.

National Academies of Sciences & Medicine. (2016). Genetically engineered crops: Experiences and prospects. The National Academies Press.

Ortigosa, A., Giménez-Ibáñez, S., Leonhardt, N., & Solano, R. (2019). Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnology Journal, 17(3), 665–673. http://doi.org/10.1111/pbi.13006

Osakabe, Y., Liang, Z., Ren, C., Nishitani, C., Osakabe, K., Wada, M., Komori, S., Malnoy, M., Velasco, R., Poli, M., Jung, M.-H., Koo, O.-J., Viola, R., & Nagamangala Kanchiswamy, C. (2018). CRISPR-Cas9-mediated genome editing in apple and grapevine. Nature Protocols, 13(12), 2844–2863. http://doi.org/10.1038/s41596-018-0067-9

Rojas-Gracia, P., Roque, E., Medina, M., Rochina, M., Hamza, R., Angarita-Díaz, M. P., Moreno, V., Pérez-Martín, F., Lozano, R., Cañas, L., Beltrán, J. P., & Gómez-Mena, C. (2017). The parthenocarpic hydra mutant reveals a new function for a SPOROCYTELESS-like gene in the control of fruit set in tomato. New Phytologist, 214(3), 1198–1212. http://doi.org/10.1111/nph.14433

Sánchez-León, S., Gil-Humanes, J., Ozuna, C. V., Giménez, M. J., Sousa, C., Voytas, D. F., & Barro, F. (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 16(4), 902–910. http://doi.org/10.1111/pbi.12837

Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., Qiu, J.-L., & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686–688. http://doi.org/10.1038/nbt.2650

Taylor, S. L., & Hefle, S. L. (2001). Ingredient and labeling issues associated with allergenic foods. Allergy: European Journal of Allergy and Clinical Immunology, 56(67), 64–69. http://doi.org/10.1034/j.1398-9995.2001.00920.x

Wang, T., Zhang, H., & Zhu, H. (2019). CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticulture Research, 6(1), 77. http://doi.org/10.1038/s41438-019-0159-x

Wolter, F., Schindele, P., & Puchta, H. (2019). Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology, 19(1), 176. http://doi.org/10.1186/s12870-019-1775-1

Downloads

Published

2021-01-21

How to Cite

Gómez-Mena, C. (2021). Plants on demand: Genome editing for plant improvement. Metode Science Studies Journal, (11), 25–29. https://doi.org/10.7203/metode.11.15507
Metrics
Views/Downloads
  • Abstract
    1366
  • Untitled (Español)
    0
  • PDF
    388
  • HTML
    141

Issue

Section

The plants of the future. Genome editing in biotechnology

Metrics

Similar Articles

> >> 

You may also start an advanced similarity search for this article.