The future of citrus fruit: The impact of climate change on citriculture

Authors

  • Damián Balfagón Jaume I University (UJI) in Castellón (Spain).
  • Vicent Arbona Jaume I University (UJI) in Castellón (Spain).
  • Aurelio Gómez-Cadenas Jaume I University (UJI) in Castellón (Spain).

DOI:

https://doi.org/10.7203/metode.12.20319

Keywords:

elevated temperatures, plant physiology, selective breeding, salinity, drought, citrus

Abstract

Current citriculture is threatened by climate change. The increase in temperature, together with other adverse climate phenomena, is modifying the environmental conditions in the regions where citrus varieties are currently being developed. The detrimental effects of these adverse environmental factors on citrus physiology and production, such as drought or augmented soil salinity, will likely increase because of elevated temperatures, which will jeopardise crop production and, in extreme cases, even plant survival. Studying citrus tolerance responses to climate change may hold the key to developing new citrus varieties capable of withstanding future environmental conditions while still maintaining production.

Downloads

Download data is not yet available.

Author Biographies

Damián Balfagón, Jaume I University (UJI) in Castellón (Spain).

Postdoctoral researcher in the Laboratory of Ecophysiology and Biotechnology in the Department of Agricultural Sciences at the Jaume I University (UJI) in Castellón (Spain). His doctoral thesis focused on the study of plant responses to combined stress, with a particular interest in the effects of elevated temperatures, together with other abiotic stress factors, on citruses.

Vicent Arbona, Jaume I University (UJI) in Castellón (Spain).

Professor in the Department of Agricultural Sciences at the Jaume I University (UJI) in Castellón (Spain) and a researcher in the Laboratory of Ecophysiology and Biotechnology (UJI). After obtaining his PhD at the same university, he completed postdoctoral stays at the University of California at Riverside (USA), the Leibniz-Institut für Pflanzenbiochemie in Halle/Saale (Germany), and the Valencian Institute of Agricultural Research, in Moncada (Spain).

Aurelio Gómez-Cadenas, Jaume I University (UJI) in Castellón (Spain).

Professor in the Department of Agricultural Sciences at the Jaume I University (UJI) in Castellón (Spain) and coordinator of the Ecophysiology and Biotechnology group (UJI). He completed his PhD at the Valencian Institute of Agricultural Research, in Moncada (Spain) and completed a postdoctoral stay at Washington University in St. Louis, MO (USA). 

References

Arbona, V., Flors, V., Jacas, J., García-Agustín, P., & Gómez-Cadenas, A. (2003). Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant & Cell Physiology, 44(4), 388–394. https://doi.org/10.1093/pcp/pcg059

Arbona, V., López-Climent, M. F., Pérez-Clemente, R. M., & Gómez-Cadenas, A. (2009). Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environmental and Experimental Botany, 66(1), 135–142. https://doi.org/10.1016/j.envexpbot.2008.12.011

Balfagón, D., Sengupta, S., Gómez-Cadenas, A., Fritschi, F. B., Azad, R. K., Mittler, R., & Zandalinas, S. I. (2019). Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiology, 181(4), 1668–1682. https://doi.org/10.1104/pp.19.00956

Balfagón, D., Zandalinas, S. I., Baliño, P., Muriach, M., & Gómez-Cadenas, A. (2018). Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Plant Physiology and Biochemistry, 127, 194–199. https://doi.org/10.1016/j.plaphy.2018.03.029

Balfagón, D., Zandalinas, S. I., & Gómez-Cadenas, A. (2019). High temperatures change the perspective: Integrating hormonal responses in citrus plants under co-occurring abiotic stress conditions. Physiologia Plantarum, 165(2), 183–197. https://doi.org/10.1111/ppl.12815

Balfagón, D., Zandalinas, S. I., Mittler, R., & Gómez-Cadenas, A. (2020). High temperatures modify plant responses to abiotic stress conditions. Physiologia Plantarum, 170(3), 335–344. https://doi.org/10.1111/ppl.13151

Gimeno, J., Gadea, J., Forment, J., Pérez-Valle, J., Santiago, J., Martínez-Godoy, M. A., Yenush, L., Bellés, J. M., Brumós, J., Colmenero-Flores, J. M., Talón, M., & Serrano R. (2009). Shared and novel molecular responses of mandarin to drought. Plant Molecular Biology, 70, 403–420. https://doi.org/10.1007/s11103-009-9481-2

Gómez-Cadenas, A., Vives, V., Zandalinas, S. I., Manzi, M., Sánchez-Pérez, A. M., Pérez-Clemente, R. M., & Arbona, V. (2015). Abscisic acid: A versatile phytohormone in plant signaling and beyond. Current Protein and Peptide Science, 16(5), 413–434. https://doi.org/10.2174/1389203716666150330130102

Gonçalves, L. P., Alves, T. F. O., Martins, C. P. S., de Sousa, A. O., dos Santos, I. C., Pirovani, C. P., Almeida, A. F., Filho, M. A. C., Gesteira, A. S., Soares Filho, Walter dos S., Girardi, E. A., & Costa, M. G. C. (2016). Rootstock-induced physiological and biochemical mechanisms of drought tolerance in sweet orange. Acta Physiologiae Plantarum, 38(7), 174. https://doi.org/10.1007/s11738-016-2198-3

IPCC. (2014). Climate change 2014: Synthesis report. IPCC.

López-Climent, M. F., Arbona, V., Pérez-Clemente, R. M., & Gómez-Cadenas, A. (2008). Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany, 62(2), 176–184. https://doi.org/10.1016/j.envexpbot.2007.08.002

Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537. https://doi.org/10.3389/fpls.2017.00537

Pereira, F. F. S., Sánchez-Román, R. M., & Orellana González, A. M. G. (2017). Simulation model of the growth of sweet orange (Citrus sinensis L. Osbeck) cv. Natal in response to climate change. Climatic Change, 143(1), 101–113. https://doi.org/10.1007/s10584-017-1986-0

Romero, P., Navarro, J. M., Pérez-Pérez, J., García-Sánchez, F., Gómez-Gómez, A., Porras, I., Martinez, V., & Botía, P. (2006). Deficit irrigation and rootstock: Their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiology, 26, 1537–1548. https://doi.org/10.1093/treephys/26.12.1537

Sauter, M. (2013). Root responses to flooding. Current Opinion in Plant Biology, 16(3), 282–286. https://doi.org/10.1016/j.pbi.2013.03.013

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43. https://doi.org/10.1111/nph.12797

Vincent, C., Morillon, R., Arbona, V., & Gómez-Cadenas, A. (2020). Citrus in changing environments. In M. Talon, M. Caruso, & F. G. Gmitter Jr. (Eds.), The genus Citrus (pp. 271–289). Elsevier. https://doi.org/10.1016/B978-0-12-812163-4.00013-9

Zandalinas, S. I., Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2017). Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Frontiers in Plant Science, 8, 953. https://doi.org/10.3389/fpls.2017.00953

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2–12. https://doi.org/10.1111/ppl.12540

Zandalinas, S. I., Rivero, R. M., Martínez, V., Gómez-Cadenas, A., & Arbona, V. (2016). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biology, 16, 105. https://doi.org/10.1186/s12870-016-0791-7

Downloads

Published

2022-02-02

How to Cite

Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2022). The future of citrus fruit: The impact of climate change on citriculture. Metode Science Studies Journal, (12), 123–129. https://doi.org/10.7203/metode.12.20319
Metrics
Views/Downloads
  • Abstract
    2504
  • PDF
    1102
  • Untitled (Español)
    0

Issue

Section

Climate crisis. The crevice of the planet

Metrics

Similar Articles

> >> 

You may also start an advanced similarity search for this article.