Scientific photography and astronomy: Technology applied to understanding the universe

Authors

  • Fernando Abalos Vazquez  AstroCamp Astronomical Complex (Nerpio, Albacete, Spain).
  • Javier Ábalos Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia (Spain).

DOI:

https://doi.org/10.7203/metode.14.24625

Keywords:

astronomy, digital photography, light, technology, universe

Abstract

In 1925, Edwin Hubble took the first step towards increasing the size of the known universe by several orders of magnitude using the precarious photographic methods available at the time: glass plates and photosensitive emulsions. Analysing periodic variations in the brightness of certain stars (Cepheids) through photographs, Hubble was able to show that the distance between Andromeda and the Earth was much greater than previously thought. Thus, Andromeda, previously thought to be a nebula, had to be a galaxy different from our own. Suddenly, the estimated size of the universe went from a few hundred thousand light years to a few billion light years. Since then, the synergy between photographic technology and astronomy has continued to grow.

Downloads

Download data is not yet available.

Author Biographies

Fernando Abalos Vazquez,  AstroCamp Astronomical Complex (Nerpio, Albacete, Spain).

Engineer and head of operations at the AstroCamp Astronomical Complex (Nerpio, Albacete, Spain), a scientific-technical project founded in 2011 with the aim of facilitating access to optimal conditions for astrophotography through the use of remote telescopes

Javier Ábalos, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia (Spain).

Postdoctoral researcher at the Ethology Laboratory of the Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia (Spain). His research focuses on the study of animal colouration and behaviour, although his scientific interests are wide-ranging

References

Benneke, B., Wong, I., Piaulet, C., Knutson, H. A., Lothringer, J., Morley, C. V, Crossfield, I. J. M., Gao, P., Greene, T. P., Dressing, C., Dragomir, D., Howard, A. W., McCullough, P. R., Kempton, E. M. R., Fortney, J., & Fraine, J. (2019). Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. The Astrophysical Journal Letters, 887(1), L14. https://doi.org/10.3847/2041-8213/ab59dc

Böker, T., Arribas, S., Lützgendorf, N., Alves de Oliveira, C., Beck, T. L., Birkmann, S., Bunker, A. J., Charlot, S., de Marchi, G., Ferruit, P., Giardino, G., Jakobsen, P., Kumari, N., López-Caniego, M., Maiolino, R., Manjavacas, E., Marston, A., Moseley, S. H., Muzerolle, J., … Zeidler, P. (2022). The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astronomy & Astrophysics, 661, A82. https://doi.org/10.1051/0004-6361/202142589

Bryson, S., Kunimoto, M., Kopparapu, R. K., Coughlin, J. L., Borucki, W. J., Koch, D., Aguirre, V. S., Allen, C., Barentsen, G., Batalha, N. M., Berger, T., Boss, A., Buchhave, L. A., Burke, C. J., Caldwell, D. A., Campbell, J. R., Catanzarite, J., Chandrasekaran, H., Chaplin, W. J., … Zamudio, K. A. (2021). The occurrence of rocky habitable-zone planets around solar-like stars from Kepler data. The Astronomical Journal, 161(1), 36. https://doi.org/10.3847/1538-3881/abc418

Bunn, E. F., & Hogg, D. W. (2009). The kinematic origin of the cosmological redshift. American Journal of Physics, 77(8), 688–694. https://doi.org/10.1119/1.3129103

Cassinello Espinosa, A. (2019). La medida del cielo: Momentos estelares en las ciencias del cosmos. Escolar y Mayo Editores S. L.

Gardner, J. P., Mather, J. C., Clampin, M., Doyon, R., Greenhouse, M. A., Hammel, H. B., Hutchings, J. B., Jakobsen, P., Lilly, S. J., Long, K. S., Lunine, J. I., Mccaugherean, M. J., Mountain, M., Nella, J., Rieke, G. H., Rieke, M. J., Rix, H., Smith, E. P., Sonneborn, G., … Wright, G. S. (2006). The James Webb space telescope. Space Science Reviews, 123(4), 485–606. https://doi.org/10.1007/s11214-006-8315-7

Harrison, E. (1993). The redshift-distance and velocity-distance laws. The Astrophysical Journal, 403, 28–31.

Henden, A. A., Welch, D. L., Terrell, D., & Levine, S. E. (2009). The AAVSO photometric all-sky survey (APASS). American Astronomical Society Meeting Abstracts, 214, 402–407.

Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15(3), 168–173. https://doi.org/10.1073/pnas.15.3.168

Hubble, E., & Humason, M. L. (1931). The velocity-distance relation among extra-galactic nebulae. The Astrophysical Journal, 74, 43–80. https://doi.org/10.1086/143323

Huggins, W., & Miller, W. A. (1864). On the spectra of some fixed stars. Philosophical Transactions of the Royal Society of London, 154, 413–445. https://doi.org/10.1098/rstl.1864.0012

Leavitt, H. S., & Pickering, E. C. (1912). Periods of 25 variable stars in the Small Magellanic Cloud. Harvard College Observatory Circular, 173, 1–3.

Libby-Roberts, J. E., Berta-Thompson, Z. K., Désert, J.-M., Masuda, K., Morley, C. V., Lopez, E. D., Deck, K. M., Fabrycky, D., Fortney, J. J., Line, M. R., Sanchis-Ojeda, R., & Winn, J. N. (2020). The featureless transmission spectra of two super-puff planets. The Astronomical Journal, 159(2), 57. https://doi.org/10.3847/1538-3881/ab5d36

Mayor, M., & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378(6555), 355–359. https://doi.org/10.1038/378355a0

Petigura, E. A., Howard, A. W., & Marcy, G. W. (2013). Prevalence of Earth-size planets orbiting Sun-like stars. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19273–19278. https://doi.org/10.1073/pnas.1319909110

Rossiter, M. W. (1980). “Women’s work” in science, 1880-1910. ISIS, 71(3), 381–398. https://doi.org/10.1086/352540

Shapley, H., & Curtis, H. D. (1921). The scale of the universe. Bulletin of the National Research Council, 2(11), 171–217. https://archive.org/details/scaleofuniverse00shap

Slipher, V. M. (1915). Spectrographic observations of nebulae. Popular Astronomy, 23, 21–24.

Taton, R., & Curtis, W. (1995). Planetary astronomy from the Renaissance to the rise of Astrophysics: Part B: The Eighteenth and Nineteenth centuries. Cambridge University Press.

Downloads

Published

2024-01-11

How to Cite

Abalos Vazquez, F., & Ábalos, J. (2024). Scientific photography and astronomy: Technology applied to understanding the universe. Metode Science Studies Journal, (14), 41–49. https://doi.org/10.7203/metode.14.24625
Metrics
Views/Downloads
  • Abstract
    938
  • PDF
    146

Issue

Section

Moments of science. Photography and the understanding of nature

Metrics

Similar Articles

<< < > >> 

You may also start an advanced similarity search for this article.