University dropout: Prevention patterns through the application of educational data mining

Authors

DOI:

https://doi.org/10.7203/relieve.26.1.16061

Keywords:

Student environment, Computer learning, Decision trees, Counseling, Feature selection

Abstract

Recently, the use of educational data mining techniques has gained great relevance when applied to performance prediction, creation of predictive retention models, behaviour profiles and school failure, amongst others. For the present paper we applied an attribute selection algorithm to identify the most important factors influencing drop out decision. Decision trees were used to define patterns that can alert an imminent dropout. A tool was adapted and administered online to 300 students from public HEIs, and 200 students from private HEIs currently enrolled on a higher education program. By means of the attribute selection algorithm, 27 relevant factors were found. Within the three main factors, the lack of counselling, an adequate student environment and academic follow-up were recognized, whilst, 7 patterns were found through the decision tree. These included factors such as: student environment, insufficient financial support, experience of an uncomfortable situation and place of career choice, amongst others. Finally, it has been seen that school drop-out does not depend on a single factor but is multifactorial. It is imperative to expand the sample to include other cities. This will enable various algorithms to be applied, providing greater information and leading to the establishment of accurate mechanisms for reducing university drop-out rates, according to the characteristics of the student population in each region.

Author Biographies

Argelia Berenice Urbina-Nájera, UPAEP-University

Argelia B. Urbina Nájera, belongs to the Mexican National System of Researchers. His lines of research focus on the application educational data mining, and of machine learning, data science and business intelligence in the field of education, health and commercial activities. Has a PhD. in Strategic Planning and Technology Management from the Universidad Popular Autónoma del Estado de Puebla (UPAEP), has a Master of Science degree in Computer Engineering from the Universidad Autónoma de Tlaxcala, has a Master of Science degree in Education from the Instituto de Estudios Universitarios. Currently she works a Full-Time Professor-Researcher at Deanery of Engineerings at UPAEP.

José Carlos Camino-Hampshire, Accenture (México) & UPAEP-University (México)

José Carlos Camino Hampshire has a BSc in Industrial Engineering & Management from UPAEP. He also has a MSc in Logistics and Supply Chain Management and a MSc in Data Science and Business Intelligence from the same institution. Currently he works as Management Consulting Manager at Accenture México within the Supply Chain practice for Products Industry (Consumer Goods and Services, retail, hospitality, automotive, among others).

Raúl Cruz Barbosa, Mixteca´s Technology University (Mexico).

Raúl Cruz-Barbosa received his B.S. and M. Sc. degrees from Autonomous University of Puebla, Mexico. He also has a Ph.D. in Artificial Intelligence from Technical University of Catalonia, Spain. Dr. Cruz-Barbosa is member of the Mexican National Research System. His research interests are related to large scale machine learning, digital image processing, data mining and pattern recognition as well as their application in education, Bioinformatics and computer aided detection and diagnosis.

References

Abarca R., A., & Sánchez V., M. A. (2005). La deserción estudiantil en la educación superior: el caso de la Universidad de Costa Rica. Revista Electrónica "Actualidades Investigativas en Educación", 5, 1-22. https://bit.ly/35TVeLE

Abu-Oda, G. S., & El-Halees, A. M. (2015). Data mining in higher education: university student dropout case study. International Journal of Data Mining y Knowledge Management Process (IJDKP), 5(1), 15-27. https://doi.org/10.5121/ijdkp.2015.5102

Agaoglu, M. (2016). Predicting instructor performance using data mining techniques in higher education. IEEE Access, 4. https://doi.org/10.1109/ACCESS.2016.2568756

Al-Barrak, M. A., & Al-Razgan, M. (2016). Predicting student’s final GPA using decision trees: a case study. International Journal of Information and Education Technology, 6(7), 528-533. https://doi.org/10.7763/IJIET.2016.V6.745

Alkhasawneh, R., & Hargraves, R. H. (2014). Developing a Hybrid Model to Predict Student First Year Retention in STEM Disciplines Using Machine Learning Techniques. Journal of STEM Education: Innovations and Research, 5(3), 35-42. ERIC. https://bit.ly/2Rd04hi

Aulck, L., Velagapudi, N., Blumenstock, J., & West, J. (2017). Predicting Student Dropout in Higher Education. Machine Learning in Social Good Applications, 16-20. https://bit.ly/3aRtae6

Barbosa M. L. M., Serra da Cruz, S. M., & Zimbrão, G. (2014). The Impact of High Dropout Rates in a Large Public Brazilian University: A Quantitative Approach Using Educational Data Mining. 6th International Conference on Computer Supported Education (págs. 124-129). Barcelona, Spain: INSTICC. https://bit.ly/2ZsYFbD

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. USA: O´Really Media, Inc.

Bishop, C. M. (2007). Pattern recognition and Machine Learning. Singapore: Springer.

Cabrera, L., Bethencour, J. T., Álvarez P. P., & González A. M. (2006). El problema del abandono de los estudios universitarios. RELIEVE, 12(2), 171-203. https://doi.org/10.7203/relieve.12.2.4226

Carvajal O. P., & Trejos C. Á. A. (2016). Revisión de estudios sobre deserción estudiantil en educación superior en Latinoamérica bajo la perspectiva de Pierre Bourdieu. Congresos CLABES. Quito, Ecuador: Escuela Politécnica Nacional. https://bit.ly/2UP9mlT

Cha, G.-W., Kim, Y.-C., Moon, H. J., & Hong, W.-H. (2017). New approach for forecasting demolition waste generation using chisquared automatic interaction detection (CHAID) method. Journal of Cleaner Production, 168, 375-385. https://doi.org/10.1016/j.jclepro.2017.09.025

Chen, W., Xie, X., Peng, J., Wang, J., Duan, Z., & Hong, H. (2017). GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models. Geomatics, Natural Hazards and Risk, 8(2), 950-973. https://doi.org/10.1080/19475705.2017.1289250

Chiheb, F., Boumahdi, F., Bouarfa, H., & Boukraa, D. (2017). Predicting students’ performance using decision trees: Case of an Algerian University. 2017 International Conference on Mathematics and Information Technology (ICMIT). Adrar, Algeria: IEEE. https://doi.org/10.1109/MATHIT.2017.8259704

Dekker, G. W., Pechenizki, M., & Vleeshouwers, J. M. (2009). Predicting Students Drop Out: A Case Study. 2nd International Conference on Educational Data Mining (págs. 41-50). Cordoba, Spain: International Educational Data Mining Society. https://bit.ly/2ZlH1a3

Delen, D. (2011). Predicting Student Attrition with Data Mining Methods. Journal of College Student Retention: Research, Theory y Practice, 13(1), 17-35. https://doi.org/10.2190/CS.13.1.b

Del Pobil, A. P., Mira, J., & Ali, M. (1998). Tasks and Methods in Applied Artificial Intelligence. 11th International Conference on Industrial and Engineering Applications of Artificial In telligence and Expert Systems. 1416. Castellón, España: Springer.

Estrada-Danell, R. I., Zamarripa-Franco, R. A., Zúñiga-Garay, P. G., & Martínez-Trejo, I. (2016). Aportaciones desde la minería de datos al proceso de captación de matrícula de instituciones de educación superior particulares. Revista Electrónica Educare, 20(3), 1-21. https://doi.org/10.15359/ree.20-3.11

Fozdar, B. I., Kumar, L. S., & Kannan, S. (2006). A Survey of a Study on the Reasons Responsible for Student Dropout from the Bachelor of Science Programme at Indira Gandhi National Open University. International Review of Research in Open and Distance Learning, 7(3), 1-15. https://doi.org/10.19173/irrodl.v7i3.291

Frank, E., Hall, Mark A., & Witten I. H. (2016). The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques", Morgan Kaufmann, Fourth Edition, 2016.

Freitas, A. A. (2002). Data Mining and Knowledge Discovery with Evolutionary Algorithms. The Netherlands: Springer-Verlag. https://doi.org/10.1007/978-3-662-04923-5

Guevara, C., Sanchez-Gordon, S., Arias-Flores, H., Varela-Aldás, J., Castillo-Salazar, D., Borja, M., . . . Yandún-Velasteguí, M. (2019). Detection of Student Behavior Profiles Applying Neural Networks and Decision Trees. 1026, págs. 591-597. Munich, Germany: Springer, Cham. https://doi.org/10.1007/978-3-030-27928-8_9

Gupta, B., Rawat, A., Jain, A., Arora, A., & Dhami, N. (2017). Analysis of Various Decision Tree Algorithms for Classification in Data Mining. International Journal of Computer Applications, 163(8), 15-19. https://doi.org/10.5120/ijca2017913660

Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques. Amsterdam: Morgan Kaufmann.

INEGI. (2018). Estadísticas a propósito del día mundial de la población (11 de julio). Ciudad de México: INEGI. https://bit.ly/2xbnZHd

Jadhav, S. D., & Channe, H. P. (2016). Comparative Study of K-NN, Naive Bayes and Decision Tree Classification Techniques. International Journal of Science and Research (IJSR), 5(1), 1842-1845. https://doi.org/10.21275/v5i1.NOV153131

Kabra, R. R., & Bichkar, R. S. (2011). Performance Prediction of Engineering Students using Decision Trees. International Journal of Computer Applications, 36(11), 9-12. https://bit.ly/2JdxckV

Kotsiantis, S., Pierrakeas, C., & Pintelas, P. E. (2003). Preventing Student Dropout in Distance Learning Using Machine Learning Techniques. Knowledge-Based Intelligent Information and Engineering Systems, 7th International Conference (págs. 267-274). Oxford, UK.: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-45226-3_37

Kumar Y. S., Bharadwaj, B., & Pal, S. (2012). Mining Education Data to Predict Student's Retention: A comparative Study. International Journal of Computer Science and Information Security, 10(2), 113-117. https://bit.ly/2JJw9t1  

Lavado, P., & Gallegos, J. (2005). La dinámica de la deserción escolar en el Perú: un enfoque usando modelos de duración. Lima, Perú: Universidad del Pacífico. https://bit.ly/39PH3rJ

Londoño A. L. F. (2013). Factores de riesgo presentes en la deserción estudiantil en la Corporación Universitaria Lasallista. Revista Virtual Universidad Católica del Norte (38), 183-194. https://bit.ly/1OnjEwM

Longest, K. C. (2019). Using Stata for Quantitative Analysis. California, USA: SAGE Publications.

M.P. van der Aalst, W. (2011). Process Mining: Discovery, Conformance and Enhancement of Business Processes (Google eBook). London, UK: Springer-Verlag. https://doi.org/10.1007/978-3-642-19345-3

Márquez-Vera C., Romero M. C., & Ventura S. S. (2012). Predicción del Fracaso Escolar mediante Técnicas de Minería de Datos. Revista Iberoamericana de Tecnologías del Aprendizaje, 7(3), 109-117. https://bit.ly/2zoZKmo

Márquez-Vera, C., Cano, A., Romero, C., Mohammad N. A. Y., Fardoun, H. M., & Ventura, S. (2016). Early dropout prediction using data mining: a case study with high school students. Expert Systems, 33(1), 107-125. https://doi.org/10.1111/exsy.12135

Mitchell, T. M. (1997). Machine Learning. Singapore: McGraw-Hill.

Mitchell, T. M. (2000). Decision Tree Learning. Washington State University. https://bit.ly/2N1AI32

Morales C. J., & Parraga-Alava, J. (2018). How Predicting The Academic Success of Students of the ESPAM MFL?: A Preliminary Decision Trees Based Study. 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM). Cuenca, Ecuador: IEEE. https://doi.org/10.1109/ETCM.2018.8580296

Morillas, A. (2014). Muestreo en poblaciones finitas. Notas del curso. Málaga-España: Universidad de Málaga. https://bit.ly/2JLLA3K

OECD. (2017). Skills Strategy Diagnostic Report: Mexico 2017, OECD Skills Studies. París: OECD Publishing. https://doi.org/10.1787/9789264287679-en

OECD. (2019). Higher Education in Mexico: Labour Market Relevance and Outcomes, Higher. París: OECD Publishing. https://doi.org/10.1787/9789264309432-en

Pal, S. (2012). Mining Educational Data Using Classification to Decrease Dropout Rate of Students. International Journal of Multidisciplinary Sciences and Engineering, 3(5), 35-39. https://bit.ly/2xVhAjc

Raju, D. y Schumacker, R. (2015). Exploring Student Characteristics of Retention that Lead to Graduation in Higher Education Using Data Mining Models. Journal of college student retention: Research, Theory y Practice, 16(5), 563-591. https://doi.org/10.2190/CS.16.4.e

Rodríguez-Maya, N. E., Lara-Álvarez, C., May-Tzuc, O., & Suárez-Carranza, B. A. (2017). Modeling Students' Dropout in Mexican Universities. Research in Computing Science, 139, 163-175. https://doi.org/10.13053/rcs-139-1-13

Ruíz C., L. (2009). Deserción en la educación superior recinto Las Minas. Período 2001-2007. Ciencia e Interculturalidad, 4(2), 30-46. https://doi.org/10.5377/rci.v4i1.288

Sara, N. B., Halland, R., Igel, C., & Alstrup, S. (2015). High-School Dropout Prediction Using Machine Learning: A Danish Large-scale Study. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (págs. 319-324). Bruges, Belgium: i6doc.com. https://bit.ly/2MFgzkp

Secretaría de Educación Pública. (2019). Abandono escolar. Ciudad de México: SEP.

Secretaría de Educación Pública. (2019). Principales cifras del sistema educativo nacional 2018-2019. Ciudad de México: Dirección General de Planeación, Programación y Estadística. https://bit.ly/2yCwivX

Sharma, H., & Kumar, S. (2016). A Survey on Decision Tree Algorithms of Classification in Data Mining. International Journal of Science and Research (IJSR), 5(4), 2094-2097. https://doi.org/10.21275/v5i4.NOV162954

Sivakumar, S., Venkataraman, S., & Selvaraj, R. (2016). Predictive Modeling of Student Dropout Indicators in Educational Data Mining using Improved Decision Tree. Indian Journal of Science and Technology, 9(4), 1-5. https://doi.org/10.17485/ijst/2016/v9i4/87032

Universidad Tecnológica de Tabasco. (2019). Glosario de Términos. Villermosa, Tabasco: Universidad Tecnológica de Tabasco. https://bit.ly/2xZ60DK

Ustebay, S., Turgut, Z., & Ali A. M. (2018). Intrusion Detection System with Recursive Feature Elimination by Using Random Forest and Deep Learning Classifier. 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT) (págs. 71-76). Ankara, Turkey: IEEE. https://doi.org/10.1109/IBIGDELFT.2018.8625318

Vélez, A., & López, J. D. F. (2004). Estrategias para vencer la deserción universitaria. Educación y Educadores (7). 177-203. https://bit.ly/39MgeEJ

Valle G. R., Eslava G. G., Manzano P. A., & García M. M. (2014). Encuesta Internacional sobre el Abandono en la Educación Superior. Unión Europea. https://bit.ly/2p8k2Pk

Vijayalakshmi, M., & Kumar, A. S. (2011). Efficiency of decision trees in predicting student's academic performance. Computer Science y Information Technology, 335-343. https://doi.org/10.5121/csit.2011.1230

Vries, W., León A. P., Romero M. J. F., & Hernández S. I. (2011). ¿Desertores o decepcionados? Distintas causas para abandonar los estudios universitarios. Revista de la Educación Superior, 40(160), 29-49. https://bit.ly/1TzOzru

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques. San Francisco, CA: ELSEVIER.

Witten, I. H., Frank, E., & Hall, M.A. (2011). Data mining: Practical machine learning tools and techniques (3a. ed.). Morgan Kaufmann Publishers, Burlington. https://doi.org/10.1016/B978-0-12-374856-0.00001-8

Yamao, E., Saavedra, L. C., Campos P. R., & Huancas H. V. D. (2018). Prediction of academic performance using data mining in first year students of peruvian university. CAMPUS, XXIII(26), 151-160. https://doi.org/10.24265/campus.2018.v23n26.05

Yang, S., Lu, O., Huang, A., Huang , J., Ogata, H., & Lin, A. (2017). Predicting Students' Academic Performance Using Multiple Linear Regression and Principal Component Analysis. Journal of Information Processing, 170-176. https://doi.org/10.2197/ipsjjip.26.170

Yukselturk, E., Ozekes, S., & Kılıç T. Y. (2014). Predicting dropout student: an application of data mining methods in an online education program. European Journal of Open, Distance and e-Learning, 17(1), 119-133. https://doi.org/10.2478/eurodl-2014-0008  

Published

2020-10-20