Monitoring geomorphological changes and sediment transport during annual flows in the Rambla de Cervera (Castellón)
DOI:
https://doi.org/10.7203/CGUV.112.29261Keywords:
Ríos efímeros, cambios morfosedimentarios, monitorización de caudal y transporte de sedimento, recuperación de ríos degradadosAbstract
Most Mediterranean ephemeral rivers (ramblas) show a significant state of degradation after decades of severe human impacts (e. g. gravel extraction). The seasonal flow in these ramblas has contributed to their social and legislative abandonment. Our colleague Francesca Segura has been a reference in the study of the evolution and morphodynamic processes of the ramblas and in the struggle for their conservation. In this work of the EPHIDREAMS project, of which she is part, we describe the preliminary results of the monitoring of two reaches of the Rambla de Cervera (Castellón) during temporary flows (January and April 2020). Pressure sensors have been used to record the depth, impact sensors have served to determine the intensity of bed load transport, and photogrammetry has been applied to obtain high-resolution DTMs. From these techniques diachronic geomorphological maps, two-dimensional hydraulic models and the quantification of sediment transport rates have been obtained. In the upper reach (Enroig), both events recorded a peak flow of 50 m3/s, showing how its braided channel and the high availability of sediment allow a greater efficiency in the construction of forms (incipient lateral and medial bars) and the transport of gravels. In the middle reach (Cervera del Maestre), with a semi-confined valley with a narrow single channel, peaks of 100 m3/s (January) and 120 m3/s (April) were recorded. In this reach, the conditions of higher energy and regime close to critical flow prevented the lateral accumulation of bars, dominating the deposition of lobes during the recession stage of the hydrograph. Although the volume of sediment transported is modest (660 m3 at Enroig and 800 m3 at Cervera), it is evident that these frequent events are critical to maintain morphological activity and sediment connectivity, preventing channel narrowing due to vegetation growth.
Downloads
References
Bagnold, R. A., (1977), Bed load transport by natural rivers. Water Resour. Res., 13(2), 303–312, doi:10.1029/WR013i002p00303
Bladé E., Cea L., Corestein G., Escolano E., Puertas J., Vázquez-Cendón E., Dolz J., & Coll A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30, 1–10. DOI: 10.1016/j.rimni.2012.07.004
Calle M. (2019). Morphosedimentary dynamics of ephemeral rivers affected by gravel mining: GIS mapping and geomorphic change detection, Universidad Complutense de Madrid, 20 June
Calle, M., Alho, P., & Benito, G. (2017). Channel dynamics and geomorphic resilience in an ephemeral Mediterranean river affected by gravel mining. Geomorphology, 285, 333-346.
Calle M., Alho P., & Benito G. (2018). Monitoring ephemeral river changes during floods with SfM photogrammetry. Journal of Iberian Geology, 44, 355–373. DOI: 10.1007/s41513-018-0078-y
Calle M., Calle J., Alho P., & Benito G. (2020). Inferring sediment transfers and functional connectivity of rivers from repeat topographic surveys. Earth Surface Processes and Landforms, 45, 681–693. DOI: 10.1002/esp.4765
Conesa García, C., & Pérez Cutillas, P. (2014). Alteraciones geomorfológicas recientes en los sistemas fluviales mediterráneos de la Península Ibérica: Síntomas y problemas de incisión en los cauces. Revista de Geografía Norte Grande, 59, 25-44
Dhont, B., & Ancey, C. (2018). Are Bedload Transport Pulses in Gravel Bed Rivers Created by Bar Migration or Sediment Waves?. Geophysical Research Letters, 45, 5501-5508 https://doi.org/10.1029/2018GL077792
Dinehart, R.L. (1992). Evolution of coarse gravel bed forms: field measurements at flood stage. Water Resources Research, 28, 2667-2689
Downs, P.W., Soar, P.J., & Taylor, A. (2016). The anatomy of effective discharge: the dynamics of coarse sediment transport revealed using continuous bedload monitoring in a gravel‐bed river during a very wet year. Earth Surf. Proc. and Landf., 41(2), 147-161
García-Ruíz, J.M., & Lana-Renault, N. (2011). Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region–A review. Agric., Ecosyst. Environ, 140(3-4), 317-338
Gomez, B. (1983). Temporal variations in bedload transport rates: the effects of progressive bed armouring. Earth Surface Processes and Landforms, 8, 41-54
Gomez B., & Soar P.J. (2023). Bedload transport and the stream power approach. Proc. R. Soc. A.479, 20220783
Gómez, R., Hurtado, I., Suárez, M.L., & Vidal-Abarca, M.R. (2005). Ramblas in south-east Spain: threatened and valuable ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 387–402. https://doi.org/10.1002/aqc.680
Grant, G. E., (1997). Critical flow constrains flow hydraulics in mobile-bed streams: a new hypothesis. Water Resources Research, 33, 349-358
Hinton, D., Hotchkiss, R. H., & Cope, M. (2018). Comparison of calibrated empirical and semi-empirical methods for bedload transport rate prediction in gravel bed streams. Journal of Hydraulic Engineering, 144, 17
Kondolf, G.M. (1994). Geomorphic and environmental effects of instream gravel mining. Landscape Urban Plann., 28, 225-243.
Liébault, F., & Piégay, H. (2002). Causes of 20th century channel narrowing in mountain and piedmont rivers of southeastern France. Earth Surface Processes and Landforms, 27, 425-444
Martín-Vide, J.P., Ferrer-Boix, C., & Ollero, A. (2010). Incision due to gravel mining: modeling a case study from the Gállego River, Spain. Geomorphology, 117, 261-271
Molnar, P., Densmore, A. L., McArdell, B. W., Turowski, J. M., & Burlando, P. (2010). Analysis of changes in the step-pool morphology and channel profile of a steep mountain stream following a large flood. Geomorphology, 124, 85-94
Monsalve, A., Segura, C., Hucke, N., & Katz, S. (2020). A bed load transport equation based on the spatial distribution of shear stress – Oak Creek revisited. Earth Surf. Dynam. 8, 825-839 10.5194/esurf-8-825-2020
Nanson, G. C., & Croke, J. C. (1992). A genetic classification of floodplains. Geomorphology, 4 (6), 459-486
Nelson, J. M., Shreve, R. L., McLean, S. R., & Drake, T. G. (1995). Role of near-bed turbulence structure in bed load transport and bed form mechanics. Water Resources Research, 31, 2071-2086
Ollero A., Conesa-Garcia C., & Vidal-Abarca M.R. (2021). Buenas prácticas en gestión y restauración de cursos efímeros mediterráneos: resiliencia y adaptación al cambio climático. Editum. Ediciones de la Universidad de Murcia
Pardo, J. E. (1991). La erosión antrópica en el litoral valenciano. COPUT, Generalitat Valenciana, 240 pp.
Parker, G. (2008). Transport of gravel and sediment mixtures. ASCE Manual 54 Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. ASCE. Reston, VA, American Society of Civil Engineers, 1132 pp.
Parker, G., Clifford, N.J., & Thorne, C.R., (2011). Understanding the influence of slope on the threshold of coarse grain motion: Revisiting critical stream power. Geomorphology, 126, 51-65. DOI: 10.1016/j.geomorph.2010.10.027
Powell, D. M. (1998). Patterns and processes of sediment sorting in gravel-bed rivers. Prog. Phys. Geogr. 22, 1–32
Rabanaque M.P. (2024). Hydromorphological analysis of ephemeral streams: integrating remote sensing and machine learning approaches, Universidad de Zaragoza: Zaragoza, 17 June
Rabanaque M.P., Martínez-Fernández V., Calle M., & Benito G. (2022). Basin-wide hydromorphological analysis of ephemeral streams using machine learning algorithms. Earth Surface Processes and Landforms, 47, 328–344. DOI: 10.1002/esp.5250
Rabanaque M.P., Martínez-Fernández V., Calle M., Castillo O., & Benito G. (2024). Spatio-temporal analysis of geomorphic recovery along an altered ephemeral stream using automated image processing. Geomorphology, 450, 109069. DOI: 10.1016/j.geomorph.2024.109069
Recking, A. (2013). A simple method for calculating reach-averaged bedload transport. Journal of Hydraulic Engineering, 139
Recking, A., Frey, P., Paquier, A., & Belleudy, P. (2009). An experimental investigation of mechanisms responsible for bedload sheet production and migration. J. Geophys. Res. 114, F03010.
Recking, A., Johannot, A., Horita, K., Nasr, M., Zanker, S., Vázquez-Tarrío, D., Fontaine, F., & Melun, G. (2024). An attempt to take into account natural variability in 1D bedload prediction. Journal of Geophysical Research: Earth Surface.
Recking, A., Piton, G., Vazquez-Tarrio, D., & Parker, G. (2016). Quantifying the morphological print of bedload transport. Earth Surface Processes and Landforms DOI: 10.1002/esp.3869
Recking, A., Vázquez Tarrío, D., & Piton, G. (2023). The contribution of grain sorting to the dynamics of the bedload active layer. Earth Surface Processes and Landforms, 48(5), 979–996 https://doi.org/10.1002/esp.5530
Rickenmann, D. (2020). Effect of Sediment Supply on Cyclic Fluctuations of the Disequilibrium Ratio and Threshold Transport Discharge, Inferred From Bedload Transport Measurements Over 27 Years at the Swiss Erlenbach Stream. Water Resources Research, 56 https://doi.org/10.1029/2020WR027741
Rovira, A., Batalla, R. J., & Sala, M. (2005). Response of a river sediment budget after historical gravel mining (the lower Tordera, NE Spain). River Research and Applications, 21(7), 829-847
Sanchis-Ibor C., & Segura-Beltrán F. (2014). Spatial variability of channel changes in a Mediterranean ephemeral stream in the last six decades (1946-2006). Cuadernos de Investigación Geográfica, 40, 89. DOI: 10.18172/cig.2530
Sanchis-Ibor, C., Segura-Beltrán, F., & Almonacid-Caballer, J. (2017). Channel forms recovery in an ephemeral river after gravel mining (Palancia River, Eastern Spain). Catena, 158, 357-370. https://doi.org/10.1016/j.catena.2017.07.012
Scorpio, V., Aucelli, P.P., Giano, S.I., Pisano, L., Robustelli, G., Rosskopf, C.M., & Schiattarella, M. (2015). River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery. Geomorphology, 251, 77-90
Segura-Beltrán, F. (1983). Las terrazas de la rambla de Cervera, Cuadernos de Geografía, 34, 1-30.
Segura-Beltrán, F. (1990). Las ramblas valencianas: algunos aspectos de hidrología, geomorfología y sedimentologia, València, Universitat de València.
Segura-Beltrán, F., & Sanchis-Ibor, C. (2013). Assessment of channel changes in a Mediterranean ephemeral stream since the early twentieth century. The Rambla de Cervera, eastern Spain. Geomorphology, 201, 199-214. https://doi.org/10.1016 /j.geomorph.2013. 06.021
Segura-Beltrán F., Sanchis-Ibor C., & Vidal-Salvador A. (2020). La incisión como efecto de los cambios ambientales en ríos efímeros. In Desafíos y oportunidades de un mundo en transición: Una interpretación desde la Geografía, PUV-Tirant lo Blanch, 145–160
Soar, P.J., & Downs, P.W., (2017). Estimating bedload transport rates in a gravel‐bed river using seismic impact plates: Model development and application. Environmental Modelling & Software, 90, 182-200
Surian, N., & Rinaldi, M. (2004). Channel adjustments in response to human alteration of sediment fluxes: examples from Italian rivers. IAHS publication, 288, 276-282
Vázquez-Tarrío, D., Piégay, H., & Menéndez-Duarte, R. (2020). Textural signatures of sediment supply in gravel-bed rivers: Revisiting the armour ratio. Earth-Science Reviews, 207, 103211 https://doi.org/10.1016/j.earscirev.2020.103211
Vericat D., Wheaton J.M., & Brasington J. (2017). Revisiting the morphological approach: Opportunities and challenges with repeat high-resolution topography. In Gravel-Bed Rivers: Process and Disasters, Wiley: New York; 121–158
Whiting, P., Dietrich, W.E., Leopold, L.B., Drake, T.G., & Sherve, R.L. (1988). Bedload sheets in heterogenous sediments. Geology, 16(2), 105, C109
Downloads
Published
How to Cite
-
Abstract35
-
PDF (Español)7
Issue
Section
License
Copyright (c) 2024 Cuadernos de Geografía de la Universitat de València
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors transfer to Cuadernos de Geografía de la Universitat de València the rights of reproduction in scientific journals of the published texts. Likewise, they allow the CGUV team to distribute these contents, in addition to the CGUV website, in all those scientific databases in which it is indexed, always with the aim of ensuring a wide distribution of the work.
Building on a firm commitment to open content policies and trying to guarantee the maximum dissemination of published papers, the authors maintain all copyright rights. They may reproduce and distribute their works in other publications. However, it is recommended to disclose in the new text that it has been previously published in CGUV with a full citation.
The texts published in this journal are -if not indicated otherwise- under a Creative Commons license: Recognition-Non-Commercial-NoDerivative 4.0 International. The full license can be consulted at Creative Commons