Copper circular economy: Challenges of the energy and digital transition

Authors

  • Jorge Torrubia Energaia, Joint University Research Institute for Energy and Resource Efficiency of Aragón (Energaia), Spain. https://orcid.org/0000-0001-9282-1428
  • Alicia Valero University of Zaragoza (Spain).

DOI:

https://doi.org/10.7203/metode.15.27181

Keywords:

energy transition, circular economy, recycling, secondary resources, copper

Abstract

Copper is one of the key metals for the digital and energy transition, which will increase demand in the coming years. On the other hand, primary extraction poses increasing environmental problems due to the progressive decline in the mineral concentration of deposits (ore grade). In this context, electronic waste is becoming a very promising source of secondary copper. However, this form of copper recovery presents a number of technological and chemical challenges, including the use of renewable energy, the separation of plastics from waste and increasing process efficiency. Given the thermodynamic limitations of these processes, other non-technological aspects are very important in the transition.

Downloads

Download data is not yet available.

Author Biographies

Jorge Torrubia, Energaia, Joint University Research Institute for Energy and Resource Efficiency of Aragón (Energaia), Spain.

Graduate in Mechanical Engineering, with a Master’s Degree in Renewable Energies and Energy Efficiency. Researcher at Energaia, Joint University Research Institute for Energy and Resource Efficiency of Aragón (Energaia), Spain.

Alicia Valero, University of Zaragoza (Spain).

PhD in Chemical Engineering and Full Professor at the University of Zaragoza (Spain). Director of the Industrial Ecology Group of the Joint University Research Institute for Energy and Resource Efficiency of Aragón (Energaia).

References

Calvo, G., Mudd, G., Valero, A., & Valero, A. (2016). Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources, 5(4), 36. https://doi.org/10.3390/resources5040036

Carrara, S., Alves Dias, P., Plazzotta, B., & Pavel, C. (2020). Raw materials demand for wind and solar PV technologies in the transition towards a decarbonised energy system. Publications Office of the European Union. https://doi.org/10.2760/160859

Deetman, S., de Boer, H. S., Van Engelenburg, M., van der Voet, E., & van Vuuren, D. P. (2021). Projected material requirements for the global electricity infrastructure – generation, transmission and storage. Resources, Conservation and Recycling, 164, 105200. https://doi.org/10.1016/j.resconrec.2020.105200

Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The global e-waste monitor 2020: Quantities, flows, and the circular economy potential. United Nations University (UNU), United Nations Institute for Training and Research (UNITAR), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA).

Gregoir, L., & van Acker, K. (2022). Metals for clean energy: Pathways to solving Europe’s raw materials challenge. KU Leuven. https://eurometaux.eu/media/rqocjybv/metals-for-clean-energy-final.pdf

Huisman, J., Leroy, P., Tertre, F., Ljunggren Söderman, M., Chancerel, P., Cassard, D., Løvik, A. N., Wäger, P., Kushnir, D., Susanne Rotter, V., Mählitz, P., Herreras, L., Emmerich, J., Hallberg, A., Habib, H., & Wagner, M. (2017). ProSUM final report: Prospecting secondary raw materials in the urban mine and mining wastes. ProSUM. https://prosumproject.eu/sites/default/files/DIGITAL_Final_Report.pdf

Hund, K., Porta, D. La, Fabregas, T. P., Laing, T., & Drexhage, J. (2020). Minerals for climate action: The mineral intensity of the clean energy transition. World Bank. https://pubdocs.worldbank.org/en/961711588875536384/Minerals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf

International Copper Study Group. (2023). The world copper factbook. ICSG. https://icsg.org/copper-factbook

International Energy Agency. (2021). The role of critical minerals in clean energy transitions. IEA. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions

Loibl, A., & Tercero Espinoza, L. A. (2021). Current challenges in copper recycling: Aligning insights from material flow analysis with technological research developments and industry issues in Europe and North America. Resources, Conservation and Recycling, 169, 105462. https://doi.org/10.1016/j.resconrec.2021.105462

Mills, R. (2022, 27 october). Copper: The most important metal we are running short of. A head of the herd. https://aheadoftheherd.com/copper-the-most-important-metal-were-running-short-of-richard-mills/

Tabelin, C. B., Park, I., Phengsaart, T., Jeon, S., Villacorte-Tabelin, M., Alonzo, D., Yoo, K., Ito, M., & Hiroyoshi, N. (2021). Copper and critical metals production from porphyry ores and e-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling, 170, 105610. https://doi.org/10.1016/j.resconrec.2021.105610

Torrubia, J., Parvez, A. M., Bassorgun, A., Charitos, A., Valero, A., & van der Boogaart, K. G. (2024). Copper recovery from electronic waste: An energy transition approach to decarbonise the industry. [Paper submitted for publication].

Torrubia, J., Valero, A., & Valero, A. (2022). Thermodynamic rarity assessment of mobile phone PCBs: A physical criticality indicator in times of shortage. Entropy, 24(1), 100. https://doi.org/10.3390/e24010100

Torrubia, J., Valero, A., & Valero, A. (2023). Energy and carbon footprint of metals through physical allocation. Implications for energy transition. Resources, Conservation and Recycling, 199, 107281. https://doi.org/10.1016/j.resconrec.2023.107281

Torrubia, J., Valero, A., Valero, A., & Lejuez, A. (2023). Challenges and opportunities for the recovery of critical raw materials from electronic waste: The Spanish perspective. Sustainability, 15(2), 1393. https://doi.org/10.3390/su15021393

Valero, A., Torrubia, J., Anía, M. Á., & Torres, A. (2021). Assessing urban metabolism through MSW carbon footprint and conceptualizing municipal-industrial symbiosis—the case of Zaragoza city, Spain. Sustainability, 13(22), 12724. https://doi.org/10.3390/su132212724

Valero Navazo, J. M., Villalba Méndez, G., & Talents Peiró, L. (2014). Material flow analysis and energy requirements of mobile phone material recovery processes. The International Journal of Life Cycle Assessment, 19, 567–579. https://doi.org/10.1007/s11367-013-0653-6

Van der Voet, E., Van Oers, L., Verboon, M., & Kuipers, K. (2019). Environmental implications of future demand scenarios for metals: Methodology and application to the case of seven major metals. Journal of Industrial Ecology, 23(1), 141–155. https://doi.org/10.1111/jiec.12722

Published

2024-07-04

How to Cite

Torrubia, J., & Valero, A. (2024). Copper circular economy: Challenges of the energy and digital transition. Metode Science Studies Journal, (15). https://doi.org/10.7203/metode.15.27181
Metrics
Views/Downloads
  • Abstract
    138

Issue

Section

Everything is chemistry: Challenges for a sustainable future

Metrics

Similar Articles

> >> 

You may also start an advanced similarity search for this article.