La connexió màquina-humà: Un repàs a les interfícies cervell-computadora

Autors/ores

  • José del R. Millán Centre de Neuropròtesis de l’Escola Politècnica Federal de Lausana (Suïssa).

DOI:

https://doi.org/10.7203/metode.9.12639

Paraules clau:

interfícies cervell-computadora, processament d’ones cerebrals, aprenentatge automàtic, robòtica, rehabilitació

Resum

Aquest article introdueix una disciplina molt recent: la de les interfícies cervell-computadora (ICC), que permeten controlar dispositius sense generar cap acció motora, només mitjançant la descodificació directa dels senyals cerebrals de l’usuari. Repassarem la situació actual de les ICC, analitzarem els components principals d’aquestes interfícies i mostrarem els avanços en investigació i els prototips que ja permeten controlar una gran varietat de dispositius, des de la comunicació mitjançant teclats virtuals fins a sistemes robòtics destinats a substituir funcions motores i fins i tot a ajudar a rehabilitar aquestes funcions després d’un accident cerebrovascular. El text conclou amb algunes idees sobre el futur de les ICC.

Descàrregues

Les dades de descàrrega encara no estan disponibles.

Biografia de l'autor/a

José del R. Millán, Centre de Neuropròtesis de l’Escola Politècnica Federal de Lausana (Suïssa).

Càtedra Defitech en Interfícies Cervell-Computadora (CNBI) en el Centre de Neuropròtesis de l’Escola Politècnica Federal de Lausana (Suïssa), on també treballa com a professor associat. Les interfícies cervell-computadora, les neuropròtesis i la robòtica adaptativa figuren entre els seus camps d’investigació. El seu treball actual pretén acostar les ICC i la robòtica intel·ligent adaptativa.

Referències

Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Al-Khodairy, A., Corbet, T. A., … Millán, J. d. R. (2018). Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications, 9, 2421. doi: 10.1038/s41467-018-04673-z 

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., … Flor, H. (1999). A spelling device for the paralysed. Nature, 398(6725), 297–298. doi: 10.1038/18581

Carslon, T., & Millán, J. d. R. (2013). Brain-controlled wheelchairs: A robotic architecture. IEEE Robotics and Automation Magazine, 20(1), 65–73. doi: 10.1109/MRA.2012.2229936

Carmena, J. M. (2013). Advances in neuroprosthetic learning and control. PLOS Biology, 11(5), e1001561. doi: 10.1371/journal.pbio.1001561

Chavarriaga, R., Sobolewski, A., & Millán, J. d. R. (2014). Errare machinale est: The use of error-related potentials in brain-machine interfaces. Frontiers in Neuroscience, 8, 208. doi: 10.3389/fnins.2014.00208 

Chavarriaga, R., Ušćumlić, M., Zhang, H., Khaliliardali, Z., Aydarkhanov, R., Saeedi, S., … Millán, J. d. R. (2018). Decoding neural correlates of cognitive states to enhance driving experience. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(4), 288–297. doi: 10.1109/TETCI.2018.2848289

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., … Schwartz, A. B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 381, 557–564. doi: 10.1016/S0140-6736(12)61816-9

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse N. Y., Simeral, J. D., Vogel, J., & Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485, 372–375. doi: 10.1038/nature11076

Leeb, R., Tonin, L., Rohm, M., Desideri, L., Carlson, T., & Millán, J. d. R. (2015). Towards independence: A BCI telepresence robot for people with severe motor disabilities. Proceedings of the IEEE, 103(6), 969–982. doi: 10.1109/JPROC.2015.2419736

Millán, J. d. R., & Carmena, J. M. (2010). Invasive or noninvasive: Understanding brain-machine interface technology. IEEE Engineering in Medicine and Biology Magazine, 29(1), 16–22. doi: 10.1109/MEMB.2009.935475

Perdikis, S., Tonin, L., Saeedi, S., Schneider, C., & Millán, J. d. R. (2018). The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users. PLOS Biology, 16(25), e2003787. doi: 10.1371/journal.pbio.2003787

Raspopovic, S., Capogrosso, M., Petrini, F. M., Bonizzato, M., Rigosa, J., Di Pino, G., … Micera, S. (2014). Restoring natural sensory feedback in real-time bidirectional hand prostheses. Science Translational Medicine, 6(222), 222ra19. doi: 10.1126/scitranslmed.3006820

Ron-Angevin, R., Velasco-Álvarez, F., Fernández-Rodríguez, A., Díaz-Estrella, A., Blanca-Mena, M. J., & Vizcaíno-Martín, F. J. (2017). Brain-computer interface application: Auditory serial interface to control a two-class motor-imagery-based wheelchair. Journal of NeuroEngineering and Rehabilitation, 14(1), 49. doi: 10.1186/s12984-017-0261-y

Sellers, E. W., Ryan, D. B., & Hauser, C. K. (2014). Noninvasive brain-computer interface enables communication after brainstem stroke. Science Translational Medicine, 6(257), 257re7. doi: 10.1126/scitranslmed.3007801

Vansteensel, M. J., Pels, E. G. M., Bleichner, M. G., Branco, M. P., Denison, T., Freudenburg, Z. V., … Ramsey, N. F. (2016). Fully implanted brain-computer interface in a locked-in patient with ALS. New England Journal of Medicine, 375, 2060–2066. doi: 10.1056/NEJMoa1608085

Descàrregues

Publicades

2019-03-06

Com citar

Millán, J. del R. (2019). La connexió màquina-humà: Un repàs a les interfícies cervell-computadora. Metode Science Studies Jornal, (9), 135–141. https://doi.org/10.7203/metode.9.12639
Metrics
Views/Downloads
  • Resum
    2661
  • PDF
    1033

Número

Secció

Interconnectats. Màquines i humans davant del segle 10101

Metrics

Articles similars

<< < 

També podeu iniciar una cerca avançada per similitud per a aquest article.