The human-computer connection: An overview of brain-computer interfaces

Authors

  • José del R. Millán Center for Neuroprosthetics, Federal Institute of Technology in Lausanne (Switzerland).

DOI:

https://doi.org/10.7203/metode.9.12639

Keywords:

brain-computer interfaces, brain signal processing, machine learning, robotics, rehabilitation

Abstract

This article introduces the field of brain-computer interfaces (BCI), which allows the control of devices without the generation of any active motor output but directly from the decoding of the user’s brain signals. Here we review the current state of the art in the BCI field, discussing the main components of such an interface and illustrating ongoing research questions and prototypes for controlling a large variety of devices, from virtual keyboards for communication to robotics systems to replace lost motor functions and even clinical interventions for motor rehabilitation after a stroke. The article concludes with some insights into the future of BCI.

Downloads

Download data is not yet available.

Author Biography

José del R. Millán, Center for Neuroprosthetics, Federal Institute of Technology in Lausanne (Switzerland).

Defitech Chair in Brain-Machine Interface (CNBI) at the Center for Neuroprosthetics at the Swiss Federal Institute of Technology in Lausanne. Brain-computer interfaces, neuroprosthetics and adaptive robotics are among his fields of expertise. His current works aim at bringing together BCI and adaptive intelligent robotics.

References

Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Al-Khodairy, A., Corbet, T. A., … Millán, J. d. R. (2018). Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications, 9, 2421. doi: 10.1038/s41467-018-04673-z 

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., … Flor, H. (1999). A spelling device for the paralysed. Nature, 398(6725), 297–298. doi: 10.1038/18581

Carslon, T., & Millán, J. d. R. (2013). Brain-controlled wheelchairs: A robotic architecture. IEEE Robotics and Automation Magazine, 20(1), 65–73. doi: 10.1109/MRA.2012.2229936

Carmena, J. M. (2013). Advances in neuroprosthetic learning and control. PLOS Biology, 11(5), e1001561. doi: 10.1371/journal.pbio.1001561

Chavarriaga, R., Sobolewski, A., & Millán, J. d. R. (2014). Errare machinale est: The use of error-related potentials in brain-machine interfaces. Frontiers in Neuroscience, 8, 208. doi: 10.3389/fnins.2014.00208 

Chavarriaga, R., Ušćumlić, M., Zhang, H., Khaliliardali, Z., Aydarkhanov, R., Saeedi, S., … Millán, J. d. R. (2018). Decoding neural correlates of cognitive states to enhance driving experience. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(4), 288–297. doi: 10.1109/TETCI.2018.2848289

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., … Schwartz, A. B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 381, 557–564. doi: 10.1016/S0140-6736(12)61816-9

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse N. Y., Simeral, J. D., Vogel, J., & Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485, 372–375. doi: 10.1038/nature11076

Leeb, R., Tonin, L., Rohm, M., Desideri, L., Carlson, T., & Millán, J. d. R. (2015). Towards independence: A BCI telepresence robot for people with severe motor disabilities. Proceedings of the IEEE, 103(6), 969–982. doi: 10.1109/JPROC.2015.2419736

Millán, J. d. R., & Carmena, J. M. (2010). Invasive or noninvasive: Understanding brain-machine interface technology. IEEE Engineering in Medicine and Biology Magazine, 29(1), 16–22. doi: 10.1109/MEMB.2009.935475

Perdikis, S., Tonin, L., Saeedi, S., Schneider, C., & Millán, J. d. R. (2018). The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users. PLOS Biology, 16(25), e2003787. doi: 10.1371/journal.pbio.2003787

Raspopovic, S., Capogrosso, M., Petrini, F. M., Bonizzato, M., Rigosa, J., Di Pino, G., … Micera, S. (2014). Restoring natural sensory feedback in real-time bidirectional hand prostheses. Science Translational Medicine, 6(222), 222ra19. doi: 10.1126/scitranslmed.3006820

Ron-Angevin, R., Velasco-Álvarez, F., Fernández-Rodríguez, A., Díaz-Estrella, A., Blanca-Mena, M. J., & Vizcaíno-Martín, F. J. (2017). Brain-computer interface application: Auditory serial interface to control a two-class motor-imagery-based wheelchair. Journal of NeuroEngineering and Rehabilitation, 14(1), 49. doi: 10.1186/s12984-017-0261-y

Sellers, E. W., Ryan, D. B., & Hauser, C. K. (2014). Noninvasive brain-computer interface enables communication after brainstem stroke. Science Translational Medicine, 6(257), 257re7. doi: 10.1126/scitranslmed.3007801

Vansteensel, M. J., Pels, E. G. M., Bleichner, M. G., Branco, M. P., Denison, T., Freudenburg, Z. V., … Ramsey, N. F. (2016). Fully implanted brain-computer interface in a locked-in patient with ALS. New England Journal of Medicine, 375, 2060–2066. doi: 10.1056/NEJMoa1608085

Downloads

Published

2019-03-06

How to Cite

Millán, J. del R. (2019). The human-computer connection: An overview of brain-computer interfaces. Metode Science Studies Journal, (9), 135–141. https://doi.org/10.7203/metode.9.12639
Metrics
Views/Downloads
  • Abstract
    2661
  • PDF
    1033

Issue

Section

Interlinked. Machines and humans facing the 10101 century

Metrics

Similar Articles

<< < 

You may also start an advanced similarity search for this article.