Ghost particles in the universe: Neutrinos in astrophysics and cosmology

Authors

  • Georg Gottfried Raffelt Max Planck Institute for Physics in Munich (Germany).

DOI:

https://doi.org/10.7203/metode.7.8507

Keywords:

neutrinos, dark matter, supernova, flavor oscillations, astroparticle physics

Abstract

 

Neutrinos are nearly massless and very difficult to detect because they interact so very weakly. Sixty years after seeing the first of these «ghost particles» we know a lot about their properties. Today, observing them in nuclear reactors, the Sun, the Earth’s crust and atmosphere, and at high energies from distant cosmic sources is almost a routine task – they have become unique astrophysical messengers. They are important for a number of aspects: neutrinos shape some of the most dramatic astrophysical phenomena in the form of stellar-collapse supernova explosions, they may have created the excess of matter over antimatter in the universe, and neutrino-like «weakly interacting massive particles» may well account for the dark matter of the universe.

 

Downloads

Download data is not yet available.

Author Biography

Georg Gottfried Raffelt, Max Planck Institute for Physics in Munich (Germany).

  Senior staff scientist at the Max Planck Institute for Physics in Munich (Germany). His research focuses on the areas of theoretical astroparticle physics and cosmology. One of his specialities is supernova neutrinos and neutrino oscillations in dense media.  

References

Bertone, G. (Ed.). (2010). Particle dark matter: Observations, models and searches. Cambridge: University Press.

Bilenky, S. (2010). Introduction to the physics of massive and mixed neutrinos. Lecture Notes in Physics, 817, 1–255. doi: 10.1007/978-3-642-14043-3

Buchmüller, W., Di Bari, P., & Plümacher, M. (2005). Leptogenesis for pedestrians. Annals of Physics, 315, 305–351. doi: 10.1016/j.aop.2004.02.003

Dell’Oro, S., Marcocci, S., Viel, M., & Vissani, F. (2016). Neutrinoless double beta decay: 2015 Review. Advances in High Energy Physics, 2162659. doi: 10.1155/2016/2162659

UNE Collaboration. (2015). Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). Conceptual design report. Volume 2: The Physics Program for DUNE at LBNF. Retrieved from http://arXiv.org/abs/1512.06148

Gariazzo, S., Giunti, C., & Laveder, M. (2016). Neutrino unbound. Retrieved from http://www.nu.to.infn.it/

Horowitz, C. J., Coakley, K. J., & McKinsey, D. N. (2003). Supernova observation via neutrino-nucleus elastic scattering in the CLEAN detector. Physical Review D, 68, 023005. doi: 10.1103/PhysRevD.68.023005

Hyper-Kamiokande Proto-Collaboration. (2015). Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande. Progress of Theoretical and Experimental Physics, 053C02. doi: 10.1093/ptep/ptv061

IceCube Collaboration. (2013). First observation of PeV-energy neutrinos with IceCube. Physical Review Letters, 111, 021103. doi: 10.1103/PhysRevLett.111.021103

Janka, H.-T. (2012). Explosion mechanisms of core-collapse supernovae. Annual Review of Nuclear and Particle Science, 62, 407–451. doi: 10.1146/annurev-nucl-102711-094901

JUNO Collaboration. (2016). Neutrino physics with JUNO. Journal of Physics G: Nuclear and Particle Physics, 43, 030401. doi: 10.1088/0954-3899/43/3/030401

Koshiba, M. (1992). Observational neutrino astrophysics. Physics Reports, 220, 229–381. doi: 10.1016/0370-1573(92)90083-C

Mirizzi, A., Tamborra, I., Janka, H.-T., Saviano, N., Scholberg, K., Bollig, R., … Chakraborty, S. (2016). Supernova neutrinos: Production, oscillations and detection. La Rivista del Nuovo Cimento, 39, 1–112. doi: 10.1393/ncr/i2016-10120-8

Scholberg, K. (2012). Supernova neutrino detection. Annual Review of Nuclear and Particle Science, 62, 81–103. doi: 10.1146/annurev-nucl-102711-095006

Villaescusa-Navarro, F., Bull, P., & Viel, M. (2015). Weighing neutrinos with cosmic neutral hydrogen. Astrophysical Journal, 814, 146–165. doi: 10.1088/0004-637X/814/2/146

Downloads

Published

2017-06-20

How to Cite

Raffelt, G. G. (2017). Ghost particles in the universe: Neutrinos in astrophysics and cosmology. Metode Science Studies Journal, (7), 191–199. https://doi.org/10.7203/metode.7.8507
Metrics
Views/Downloads
  • Abstract
    982
  • PDF
    346

Issue

Section

Violent universe. High-energy astrophysics and cosmology in the twenty-first century

Metrics

Similar Articles

<< < 

You may also start an advanced similarity search for this article.