La hipòtesi de Riemann: El gran repte pendent

Autors/ores

  • Pilar Bayer Universitat de Barcelona (Espanya).

DOI:

https://doi.org/10.7203/metode.0.8903

Paraules clau:

nombres primers, funció zeta, funció L, hipòtesi de Riemann, problemes del mil·lenni

Resum

La hipòtesi de Riemann és una afirmació, no demostrada, que fa referència als zeros de la funció zeta de Riemann. Bernhard Riemann calculà els sis primers zeros no trivials d’aquesta funció i observà que tots estaven sobre una mateixa recta. En una memòria publicada l’any 1859, Riemann comentà que aquest podria ben bé tractar-se d’un fet general. La hipòtesi de Riemann afirma que tots els zeros no trivials de la funció zeta es troben en la recta = 1/2. Més de deu bilions de zeros calculats fins avui, tots alineats sobre la recta crítica, corroboren la sospita de Riemann, però ningú encara no ha pogut provar que la funció zeta no tingui zeros no trivials fora d’aquesta recta.

Descàrregues

Les dades de descàrrega encara no estan disponibles.

Biografia de l'autor/a

Pilar Bayer, Universitat de Barcelona (Espanya).

Especialista en teoria de nombres, la seva carrera acadèmica s’ha desenvolupat a la Universitat de Ratisbona (Alemanya), la Universitat Autònoma de Barcelona, la Universitat de Santander i la Universitat de Barcelona (Espanya), institució de la qual és catedràtica des de l’any 1982. La seva recerca comprèn, entre d’altres, publicacions sobre funcions zeta, equacions diofantines, corbes el·líptiques, formes modulars i corbes de Shimura. Als anys vuitanta fundà el Seminari de Teoria de Nombres de Barcelona, vigent en l’actualitat, i ha estat la directora de quinze tesis doctorals. És acadèmica numerària de la Real Academia de Ciencias Exactas, Físicas y Naturales; de la Reial Acadèmia de Ciències i Arts; de la Reial Acadèmia Europea de Doctors i membre de l’Institut d’Estudis Catalans. L’any 2015 li fou concedida la Medalla d’Honor de la Xarxa Vives d’Universitats.

Referències

Bayer, P. (2006). La hipòtesi de Riemann. In J. Quer (Ed.), Els set problemes del mil·lenni (pp. 29–62). Sabadell: Fundació Caixa Sabadell.

Bayer, P., & Neukirch, J. (1978). On values of zeta functions and ℓ-adic Euler characteristics. Inventiones Mathematicae, 50(1), 35–64. doi: 10.1007/BF01406467

Berry, M. V., & Keating, J. P. (1999). The Riemann zeros and eigenvalue asymptotics. SIAM Review, 41(2), 236–266. doi: 10.1137/S0036144598347497

Bombieri, E. (2000). Problems of the millennium: The Riemann hypothesis. Clay Mathematics Institute. Retrieved from http://www.claymath.org/sites/default/files/official_problem_description.pdf

Connes, A. (1999). Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Selecta Mathematica (N.S.), 5(1), 29–106. doi: 10.1007/s000290050042

Deligne, P. (1974). La conjecture de Weil. I. Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 43(1), 273–307. doi: 10.1007/BF02684373

Deninger, C. (1998). Some analogies between number theory and dynamical systems on foliated spaces. Documenta Mathematica, Journal der Deutschen Mathematiker-Vereiningung, Extra Vol. ICM Berlin 1998, 1, 163–186.

Du Sautoy, M. (2003). The music of the primes. Searching to solve the greatest mystery in mathematics. New York: Harper-Collins Publishers.

Euler, L. (1737). Variae observationes circa series infinitas. Commentarii Academiae Scientarium Petropolitanae, 9, 160–188.

Katz, N. M., & Sarnak, P. (1999). Random matrices, Frobenius eigenvalues, and monodromy. Providence, Rhode Island: American Mathematical Society.

Lagarias, J. C., & Odlyzko, A. M. (1987). Computing π(x): An analytic method. Journal of Algorithms, 8(2), 173–191. doi: 10.1016/0196-6774(87)90037-x

Lapidus, M. L., & Van Frankenhuysen, M. (2001). Dynamical, spectral, and arithmetic zeta functions: AMS special session, San Antonio, TX, USA, January 15–16, 1999. Providence, Rhode Island: American Mathematical Society.

Montgomery, H. L. (1973). The pair correlation of zeros of the zeta function. In Proceedings of Symposia in Pure Mathematics, XXIV (pp. 181–193). Providence, Rhode Island: American Mathematical Society.

Odlyzko, A. M. (2001). The 1022-nd zero of the Riemann zeta function. In M. L. Lapidus, & M. van Frankenhuysen (Eds.), Dynamical, spectral, and arithmetic zeta functions: AMS special session, San Antonio, TX, USA, January 15–16, 1999 (pp. 139–144). Providence, Rhode Island: American Mathematical Society.

Oresme, N. (1961). Quaestiones super geometriam Euclidis. Leiden: Brill Archive.

Riemann, G. F. B. (1859). Über die Anzahl der Primzahlen unter einer gege­benen Grösse. Monatsberichte der Berliner Akademie, 671–680.

Sarnak, P. (2005). Problems of the millennium: The Riemann hypothesis (2004). Clay Mathematics Institute. Retrieved from http://www.claymath.org/library/annual_report/ar2004/04report_prizeproblem.pdf

Selberg, A. (1956). Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. Journal of the Indian Mathematical Society (N.S.), 20, 47–87.

Weil, A. (1949). Numbers of solutions of equations in finite fields. Bulletin of the American Mathematical Society, 55(5), 497–508. doi: 10.1090/S0002-9904-1949-09219-4

Weisstein, E. W. (2002). Riemann zeta function zeros. MathWorld–A Wolfram Web Resource. Retrieved from http://mathworld.wolfram.com/-RiemannZetaFunctionZeros.html

Descàrregues

Publicades

2018-06-05

Com citar

Bayer, P. (2018). La hipòtesi de Riemann: El gran repte pendent. Metode Science Studies Jornal, (8), 35–41. https://doi.org/10.7203/metode.0.8903
Metrics
Views/Downloads
  • Resum
    3884
  • PDF
    1223

Número

Secció

Els problemes del mil·lenni. Reptes que fan progressar les matemàtiques

Metrics

Articles similars

> >> 

També podeu iniciar una cerca avançada per similitud per a aquest article.