Designing disease-resistant crops: From basic knowledge to biotechnology

Authors

  • Selena Giménez-Ibánez Plant Molecular Genetics Department in the National Center of Biotechnology-CSIC (CNB-CSIC), Spain.

DOI:

https://doi.org/10.7203/metode.11.15496

Keywords:

crops, diseases, biotechnology, food security

Abstract

Ancient records describe how plant diseases were attributed to many causes, including divine power, religious belief, and superstition. Far from these days, we now have detailed knowledge about how plant immunity is executed. Plants employ two types of sensors to perceive and defeat the litany of pathogenic organisms that attack them, whilst microbes deploy a myriad of specialized weapons to suppress immunity and promote infection. This opens a path to exploiting these insights to increase crop resistance. Here we describe novel biotechnological approaches for designing superior disease-resistant crops to fight agricultural losses in the field while reducing chemical inputs, towards a more sustainable agriculture that ensures food security.

Downloads

Author Biography

Selena Giménez-Ibánez, Plant Molecular Genetics Department in the National Center of Biotechnology-CSIC (CNB-CSIC), Spain.

Researcher at the Plant Molecular Genetics Department in the National Center of Biotechnology-CSIC (CNB-CSIC), Spain. She studied Agronomist Engineer at the Polytechnic University of Valencia (Spain) and carried out her Master Thesis at Wageningen University (the Netherlands), specializing in plant biotechnology and breeding. Then, she moved The Sainsbury Laboratory (John Innes Centre, UK), a leading centre in plant-microbial sciences, to do her PhD studies. Since 2010, she has developed her research career at CNB-CSIC, where she develops her research in plant-microbe interactions focused in understanding plant defense mechanisms controlling plant resistance against pests, and how different types of microbes are able to become successful pathogens, which might help to design novel strategies for crop protection.

References

Biffen, R. H. (1905). Mendel’s laws of inheritance and wheat breeding. The Journal of Agricultural Science, 1(1), 4–48. http://doi.org/10.1017/S0021859600000137

Foster, S. J., Park, T. H., Pel, M., Brigneti, G., Sliwka, J., Jagger, L., van der Vossen, E., & Jones, J. D. G. (2009). Rpi-vnt1.1, a Tm-2(2) homolog from Solanum venturii, confers resistance to potato late blight. Molecular Plant-Microbe Interactions, 22(5), 589–600. http://doi.org/10.1094/MPMI-22-5-0589

Ghislain, M., Byarugaba, A. A., Magembe, E., Njoroge, A., Rivera, C., Román, M. L., Tovar, J. C., Gamboa, S., Forbes, G. A., Kreuze, J. F., Barekye, A., & Kiggundu, A. (2018)). Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotechnology Journal, 17(6), 1119–1129. http://doi.org/10.1111/pbi.13042

Giannakopoulou, A., Steele, J. F. C., Segretin, M. E., Bozkurt, T. O., Zhou, J., Robatzek, S., Banfield, M. J., Pais, M., & Kamoun, S. (2015). Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum. Molecular Plant-Microbe Interactions, 28(12), 1316–1329. http://doi.org/10.1094/MPMI-07-15-0147-R

Haverkort, A. J., Boonekamp, P. M., Hutten, R., Jacobsen, E., Lotz, L. A. P., Kessel, G. J. T., Vossen, J. H., & Visser, R. G. F. (2016). Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: Scientific and societal advances in the DuRPh project. Potato Research, 59(1), 35–66. http://doi.org/10.1007/s11540-015-9312-6

Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. http://doi.org/10.1038/nature05286

Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, H. P., Smoker, M., Rallapalli, G., Thomma, B. P. H. J., Staskawicz, B., Jones, J. D. G., & Zipfel, C. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 28(4), 365–369. http://doi.org/10.1038/nbt.1613

National Academies of Sciences, Engineering and Medicine. (2016). Genetically engineered crops: Experiences and prospects. The National Academies Press. http://doi.org/10.17226/23395

Oerke, E. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31–34. http://doi.org/10.1017/S0021859605005708

Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J. C., Perez-Quintero, A., Li, T., Eom, J.-S., Li, C., Nguyen, H., Liu, B., Auguy, F., Sciallano, C., Luu, V. T., Dossa, G. S., Cunnac, S., Schmidt, S. M., Slamet-Loedin, I. H., Vera Cruz, C., Szurek, B., … Yang, B. (2019). Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, 37(11), 1344–1350. http://doi.org/10.1038/s41587-019-0267-z

Ortigosa, A., Gimenez-Ibanez, S., Leonhardt, N., & Solano, R. (2018). Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnology Journalhttp://doi.org/10.1111/pbi.13006

Rodriguez-Moreno, L., Song, Y., & Thomma, B. P. (2017). Transfer and engineering of immune receptors to improve recognition capacities in crops. Current Opinion in Plant Biology, 38, 42–49. http://doi.org/10.1016/j.pbi.2017.04.010

Segretin, M. E., Pais, M., Franceschetti, M., Chaparro-Garcia, A., Bos, J. I. B., Banfield, M. J., & Kamoun, S. (2014). Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors. Molecular Plant-Microbe Interaction, 27(7), 624–637. http://doi.org/10.1094/MPMI-02-14-0040-R

Downloads

Additional Files

Published

2021-01-21

How to Cite

Giménez-Ibánez, S. (2021). Designing disease-resistant crops: From basic knowledge to biotechnology. Metode Science Studies Journal, (11), 47–53. https://doi.org/10.7203/metode.11.15496
Metrics
Views/Downloads
  • Abstract
    1605
  • PDF
    444
  • (Español)
    2

Issue

Section

The plants of the future. Genome editing in biotechnology

Similar Articles

> >> 

You may also start an advanced similarity search for this article.