Titan’s organic chemistry: A planetary-scale laboratory to study primitive Earth

Autors/ores

  • Athena Coustenis Université París-Diderot

DOI:

https://doi.org/10.7203/metode.6.4999

Paraules clau:

Titan, natural satellites, atmosphere, organic chemistry

Resum

Saturn’s largest satellite, Titan, has been revealed by extended ground-based and space observations, and recently by the Cassini-Huygens mission. Titan’s atmosphere hosts a complex organic chemistry in the solar system starting with nitrogen and methane and leading to the formation of hydrocarbons and nitriles, including prebiotic molecules. The atmosphere also contains traces of oxygen compounds. This system is subject to seasonal variations and different physical, dynamic, and photochemical processes. Interactions between the atmosphere, the surface, and the interior also play an important role in the astrobiological potential of the satellite.

 

Descàrregues

Les dades de descàrrega encara no estan disponibles.

Biografia de l'autor/a

Athena Coustenis, Université París-Diderot

Director of Research with the CNRS at the Paris Observatory, specializing in planetology and space missions to the outer solar system. She is the President of the Space Sciences Committee of the European Science Foundation and a member of the International Space Science Institute Executive Committee. She is on the Editorial Boards of Astronomy & Astrophysics Review , Astronomy and Astrophysics Library , and Philosophical Transactions A .

Referències

Coll, P., Guillemin, J. C., Gazeau, M. C., & Raulin, F. (1999). Report and implications of the first observation of C4N2 in laboratory simulations of Titan’s atmosphere. Planetary and Space Science, 47, 1433–1440. doi: 10.1016/S0032-0633(99)00069-0

Coustenis, A., & Encrenaz, Th. (2013). Life beyond Earth: The search for habitable worlds in the universe. Cambridge: Cambridge University Press.

Coustenis, A., Salama, A., Lellouch, E., Encrenaz, Th., Bjoraker, G. L., Samuelson, R. E., … Kessler, M. F. (1998). Evidence for water vapor in Titan’s atmosphere from ISO/SWS data. Astronomy and Astrophysics, 336(3), L85–L89.

Coustenis, A., Bampasidis, G., Achterberg, R. K., Lavvas, P., Jennings, D. E., Nixon, C. A., … Stamogiorgos, S. (2013). Evolution of the stratospheric temperature and chemical composition over one Titanian year. The Astrophysical Journal, 779, 177–185. doi: 10.1088/0004-637X/779/2/177

Coustenis, A., Jennings, D. E., Achterberg, R. K., Bampasidis, G., Lavvas, P., Nixon, C. A., … Flasar, F. M. (2015). Titan’s temporal evolution in stratospheric trace gases near the poles. Icarus. doi: 10.1016/j.icarus.2015.08.027

Flasar, F. M., Achterberg, R. K., Conrath, B. J., Gierasch, P. J., Kunde, V. G., Nixon, C. A., … Wishnow, E. H. (2005). Titan’s atmospheric temperatures, winds, and composition. Science, 308(5724), 975–978. doi: 10.1126/science.1111150

Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A. J., Bar-Nun, A., Barucci, M. A., … ZRNAecki, J. C. (2005). In situ measurements of the physical characteristics of Titan’s environment. Nature, 438, 785–791. doi: 10.1038/nature04314

Iess, L., Jacobson, R. A., Ducci, M., Stevenson, D. J., Lunine, J. I., Armstrong, J. W., … Tortora, P. (2012). The tides of Titan. Science, 337(6093), 457–459. doi: 10.1126/science.1219631

Israël, G., Szopa, C., Raulin, F., Cabane, M., Niemann, H. B., Atreya, S. K., … Vidal-Madjar, C. (2005). Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature, 438, 796–799. doi: 10.1038/nature04349

McKay, C. (2005, November 3). Titan: Greenhouse and anti-greenhouse. Astrobiology Magazine. Retrieved from http://www.astrobio.net/topic/solar-system/saturn/titan/titan-greenhouse-and-anti-greenhouse/

Niemann, H. B., Atreya, S. K., Bauer, S. J., Carignan, G. R., Demick, J. E., Frost, R. L., … Way, S. H. (2005). The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature, 438, 779–784. doi: 10.1038/nature04122

Niemann, H. B., Atreya, S. K., Demick, J. E., Gautier, D., Haberman, J. A., Harpold, D. N., … Raulin, F. (2010). Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. Journal of Geophysical Research, 115(12), 2156-2202. doi: 10-1029/2010JE003659

Porco, C. C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J. A., … West, R. (2005). Imaging of Titan from the Cassini spacecraft. Nature, 434, 159–168. doi: 10.1038/nature03436

Raulin, F. (2008). Planetary science: Organic lakes on Titan. Nature, 454, 587–589. doi: 10.1038/454587a

Tomasko, M. G., Archinal, B., Becker, T., Bézard, B., Bushroe, M., Combes, M., … West, R. (2005). Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature, 438, 765–778. doi: 10.1038/nature04126

Waite, J. H., Young, D. T., Cravens, T. E., Croates, A. J., Crary, F. J., Magee, B., & Westlake, J. (2007). The process of tholin formation in Titan’s upper atmosphere. Science, 316(5826), 870–875. doi: 10.1126/science.1139727

Descàrregues

Publicades

2016-04-15

Com citar

Coustenis, A. (2016). Titan’s organic chemistry: A planetary-scale laboratory to study primitive Earth. Metode Science Studies Jornal, (6), 175–181. https://doi.org/10.7203/metode.6.4999
Metrics
Views/Downloads
  • Resum
    722
  • PDF
    325

Número

Secció

L'origen de la vida

Metrics