Hideous progeny? The future of growing humans

Authors

  • Philip Ball Science writer and author (London, UK).

DOI:

https://doi.org/10.7203/metode.12.20651

Keywords:

tissue engineering, stem cells, organoids, cell reprogramming, transhumanism

Abstract

Today’s biotechnologies are not simply providing powerful new possibilities in medicine; they are transforming our view of what it can mean to be human. In particular, the discovery of the extreme plasticity of cells – the possibility of changing one tissue type for another, and of regenerating the embryonic cell state from which we all grew – forces us to confront our status as a contingent community of living cells, and challenges traditional notions of self and identity. Here I discuss some of these technologies and their broader social, ethical and philosophical implications.

Downloads

Download data is not yet available.

Author Biography

Philip Ball, Science writer and author (London, UK).

Science writer and author (London, UK). He previously worked as an editor at Nature, and is the author of books such as Serving the Reich: The struggle for the soul of physics under Hitler (2014), Beyond weird: Why everything you thought you knew about quantum physics is different (2018), and How to grow a human: Adventures in who we are and how we are made (2019), all of them published by University of Chicago Press.

References

Aach, J., Lunshof, J., Iyer, E., & Church, G. M. (2017). Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife, 6, e20674. https://doi.org/10.7554/eLife.20674

Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9, 1911. https://doi.org/10.1038/s41467-018-04252-2

Bernal, J. D. (1970). The world, the flesh and the devil: An enquiry into the future of the three enemies of the rational soul. Jonathan Cape. (Original work published in 1931).

Boland, M. J., Hazen, J. L., Nazor, K. L., Rodriguez, A. R., Gifford, W., Martin, G., Kupriyanov, S., & Baldwin, K. K. (2009). Adult mice generated from induced pluripotent stem cells. Nature, 461, 91–94. https://doi.org/10.1038/nature08310

Greely, H. T. (2016). The end of sex and the future of human reproduction. Harvard University Press.

Greely, H. T. (2021). CRISPR people: The science and ethics of editing humans. MIT Press.

Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C., & Zernicka-Goetz, M. (2017). Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science, 356(6334), eaal1810. https://doi.org/10.1126/science.aal1810

Kim, J., Koo, B. K., & Knoblich, J. A. (2020). Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21, 571–584. https://doi.org/10.1038/s41580-020-0259-3

Kojima, J., Fukuda, A., Taira, H., Kawasaki, T., Ito, H., Kuji, N., Isaka, K., Umezawa, A., & Akutsu, H. (2017). Efficient production of trophoblast lineage cells from human induced pluripotent stem cells. Laboratory Investigation, 97, 1188–1200. https://doi.org/10.1038/labinvest.2016.159

Li, F., Hu, J., & He, T.-C. (2017). iPSC-based treatment of age-related macular degeneration (AMD): The path to success requires more than blind faith. Genes & Disease, 4(2), 41–42. https://doi.org/10.1016/j.gendis.2017.03.001

More, M., & Vita-More, N. (Eds.). (2013). The transhumanist reader. Wiley-Blackwell.

Nagoshi, N., Tsuji, O., Nakamura, M., & Okano, H. (2019). Cell therapy for spinal cord injury using induced pluripotent stem cells. Regenerative Therapy, 11, 75–80. https://doi.org/10.1016/j.reth.2019.05.006

Payne, N. L., Sylvain, A., O’Brien, C., Herszfeld, D., Sun, G., & Bernard, C. C. A. (2015). Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 32(1), 212–228. https://doi.org/10.1016/j.nbt.2014.05.001

Pera, M. (2017). Embryogenesis in a dish. Science, 356(6334), 137–138. https://doi.org/10.1126/science.aan1495

Saitou, M., & Miyauchi, H. (2016). Gametogenesis from pluripotent stem cells. Cell Stem Cell, 18(6), 721–735. https://doi.org/10.1016/j.stem.2016.05.001

Simunovic, M., & Brivanlou, A. H. (2017). Embryoids, organoids and gastruloids: New approaches to understanding embryogenesis. Development, 144(6), 976–985. https://doi.org/10.1242/dev.143529

Squier, S. M. (2004). Liminal lives: Imagining the human at the frontiers of Biomedicine. Duke University Press. https://doi.org/10.1215/9780822386285

Tang, P. C., Hashino, E., & Nelson, R. F. (2020). Progress in modeling and targeting inner ear disorders with pluripotent stem cells. Stem Cell Reports, 14(6), 996–1008. https://doi.org/10.1016/j.stemcr.2020.04.008

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomodad, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. https://doi.org/10.1016/j.cell.2007.11.019

Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024

Aach, J., Lunshof, J., Iyer, E., & Church, G. M. (2017). Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife, 6, e20674. https://doi.org/10.7554/eLife.20674Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9, 1911. https://doi.org/10.1038/s41467-018-04252-2Bernal, J. D. (1970). The world, the flesh and the devil: An enquiry into the future of the three enemies of the rational soul. Jonathan Cape. (Original work published in 1931).Boland, M. J., Hazen, J. L., Nazor, K. L., Rodriguez, A. R., Gifford, W., Martin, G., Kupriyanov, S., & Baldwin, K. K. (2009). Adult mice generated from induced pluripotent stem cells. Nature, 461, 91–94. https://doi.org/10.1038/nature08310Greely, H. T. (2016). The end of sex and the future of human reproduction. Harvard University Press.Greely, H. T. (2021). CRISPR people: The science and ethics of editing humans. MIT Press.Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C., & Zernicka-Goetz, M. (2017). Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science, 356(6334), eaal1810. https://doi.org/10.1126/science.aal1810Kim, J., Koo, B. K., & Knoblich, J. A. (2020). Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21, 571–584. https://doi.org/10.1038/s41580-020-0259-3Kojima, J., Fukuda, A., Taira, H., Kawasaki, T., Ito, H., Kuji, N., Isaka, K., Umezawa, A., & Akutsu, H. (2017). Efficient production of trophoblast lineage cells from human induced pluripotent stem cells. Laboratory Investigation, 97, 1188–1200. https://doi.org/10.1038/labinvest.2016.159Li, F., Hu, J., & He, T.-C. (2017). iPSC-based treatment of age-related macular degeneration (AMD): The path to success requires more than blind faith. Genes & Disease, 4(2), 41–42. https://doi.org/10.1016/j.gendis.2017.03.001More, M., & Vita-More, N. (Eds.). (2013). The transhumanist reader. Wiley-Blackwell.Nagoshi, N., Tsuji, O., Nakamura, M., & Okano, H. (2019). Cell therapy for spinal cord injury using induced pluripotent stem cells. Regenerative Therapy, 11, 75–80. https://doi.org/10.1016/j.reth.2019.05.006Payne, N. L., Sylvain, A., O’Brien, C., Herszfeld, D., Sun, G., & Bernard, C. C. A. (2015). Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 32(1), 212–228. https://doi.org/10.1016/j.nbt.2014.05.001Pera, M. (2017). Embryogenesis in a dish. Science, 356(6334), 137–138. https://doi.org/10.1126/science.aan1495Saitou, M., & Miyauchi, H. (2016). Gametogenesis from pluripotent stem cells. Cell Stem Cell, 18(6), 721–735. https://doi.org/10.1016/j.stem.2016.05.001Simunovic, M., & Brivanlou, A. H. (2017). Embryoids, organoids and gastruloids: New approaches to understanding embryogenesis. Development, 144(6), 976–985. https://doi.org/10.1242/dev.143529Squier, S. M. (2004). Liminal lives: Imagining the human at the frontiers of biomedicine. Duke University Press. https://doi.org/10.1215/9780822386285Tang, P. C., Hashino, E., & Nelson, R. F. (2020). Progress in modeling and targeting inner ear disorders with pluripotent stem cells. Stem Cell Reports, 14(6), 996–1008. https://doi.org/10.1016/j.stemcr.2020.04.008Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomodad, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. https://doi.org/10.1016/j.cell.2007.11.019Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024

 

Downloads

Published

2022-02-02

How to Cite

Ball, P. (2022). Hideous progeny? The future of growing humans. Metode Science Studies Journal, (12), 153–159. https://doi.org/10.7203/metode.12.20651
Metrics
Views/Downloads
  • Abstract
    1530
  • PDF
    837

Issue

Section

Transhumanism. Beyond the body

Metrics

Similar Articles

<< < > >> 

You may also start an advanced similarity search for this article.