Formas diversas de pensar sobre el cáncer: ¿Qué podemos aprender acerca del cáncer estudiándolo a través del árbol de la vida?
DOI:
https://doi.org/10.7203/metode.10.14593Palabras clave:
cáncer, paradoja de Peto, historia de la vida, multicelularidad, envejecimientoResumen
Cuando se nos pregunta sobre el cáncer, pensamos sobre todo en una enfermedad devastadora. Hay quien añadirá que el estilo de vida (por ejemplo, el tabaquismo) o la contaminación tienen algo que ver con ello, pero también quien dirá que suele ocurrirle a gente mayor. El cáncer es, en efecto, una de las causas de muerte más comunes en humanos, y su incidencia aumenta con la edad. Sin embargo, centrarnos en nuestra propia especie nos lleva a pasar por alto un dato muy elemental: el cáncer no es exclusivo de los humanos. De hecho, es un fenómeno común a varias ramas del árbol de la vida. Explorar la diversidad de estrategias utilizadas por diferentes organismos para enfrentarse a esta enfermedad puede proporcionarnos nuevos conocimientos sobre el cáncer. Además, reconocer el cáncer como una presión selectiva nos permite entender mejor la evolución de la biodiversidad que nos rodea.
Descargas
Citas
Abegglen, L. M., Caulin, A. F., Chan, A., Lee, K., Robinson, R., Campbell, M. S., … Schiffman, J. D. (2015). Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. Journal of the American Journal Association, 314(17), 1850–1860. doi: 10.1001/jama.2015.13134
Aktipis, C. A., Boddy, A. M., Jansen, G., Hibner, U., Hochberg, M. E., Maley, C. C., & Wilkinson, G. S. (2015). Cancer across the tree of life: Cooperation and cheating in multicellularity. Philosophical Transactions of the Royal Society B, 370(1673), 20140219. doi: 10.1098/rstb.2014.0219
Blanckenhorn, W. U. (2000). The evolution of body size: What keeps organisms small? The Quarterly Review of Biology, 75(4), 385–407. doi: 10.1086/393620
Brown, J. S., Cunningham, J. J., & Gatenby, R. A. (2015). The multiple facets of Peto’s paradox: A life-history model for the evolution of cancer suppression. Philosophical Transactions of the Royal Society B, 370(1673), 20140221. doi: 10.1098/rstb.2014.0221
Effron, M., Griner, L., & Benirschke, K. (1977). Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy. Journal of the National Cancer Institute, 59(1), 185–198. doi: 10.1093/jnci/59.1.185
Giraudeau, M., Sepp, T., Ujvari, B., Ewald, P. W., & Thomas, F. (2018). Human activities might influence oncogenic processes in wild animal populations. Nature Ecology & Evolution, 2(7), 1065–1070. doi: 10.1038/s41559-018-0558-7
Hochberg, M. E., & Noble, R. J. (2017). A framework for how environment contributes to cancer risk. Ecology Letters, 20(2), 117–134. doi: 10.1111/ele.12726
Kingsolver, J. G., & Pfennig, D. W. (2004). Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution, 58(7), 1608–1612. doi: 10.1554/04-003
Kokko, H., & Hochberg, M. E. (2015). Towards cancer-aware life-history modelling. Philosophical Transactions of the Royal Society B, 370(20140234). doi: 10.1098/rstb.2014.0234
Lee, M. S. Y., Cau, A., Naish, D., & Dyke, G. J. (2014). Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science, 345(6196), 562–566. doi: 10.1126/science.1252243
Nunney, L. (2018). Size matters: Height, cell number and a person’s risk of cancer. Proceedings of the Royal Society B: Biological Sciences, 285(1889), 20181743. doi: 10.1098/rspb.2018.1743
Peto, R. (1977). Epidemiology, multistage models, and short-term mutagenicity tests. In H. Hiatt, J. Watson, & J. Winsten (Eds.), Origins of human cancer(pp. 1403–1428). New York: Cold Spring Harbor Laboratory Press.
Seluanov, A., Gladyshev, V. N., Vijg, J., & Gorbunova, V. (2018). Mechanisms of cancer resistance in long-lived mammals. Nature Reviews Cancer, 18(7), 433–441. doi: 10.1038/s41568-018-0004-9
Tollis, M., Schiffman, J. D., & Boddy, A. M. (2017). Evolution of cancer suppression as revealed by mammalian comparative genomics. Current Opinion in Genetics & Development, 42, 40–47. doi: 10.1016/j.gde.2016.12.004
Vazquez, J. M., Sulak, M., Chigurupati, S., & Lynch, V. J. (2018). A zombie LIF gene in elephants is upregulated by TP53 to induce apoptosis in response to DNA damage. Cell Reports, 24(7), 1765–1776. doi: 10.1016/j.celrep.2018.07.042
Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz Jr, L. A., & Kinzler, K. W. (2013). Cancer genome landscapes. Science, 339(6127), 1546–1558. doi: 10.1126/science.1235122
Descargas
Publicado
Cómo citar
-
Resumen1555
-
PDF 595
-
3
Número
Sección
Licencia
Derechos de autor 2023 CC BY SA
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Todos los documentos incluidos en OJS son de acceso libre y propiedad de sus autores.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a Metode Science Studies Journal el derecho a la primera publicación del trabajo, licenciado bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional, que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y citando la publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente a través de páginas personales e institucionales (repositorios institucionales, páginas web personales o perfiles a redes profesionales o académicas) una vez publicado el trabajo.