The science of transhumanism: Are we nearly there?

Authors

DOI:

https://doi.org/10.7203/metode.12.20710

Keywords:

augmentation, Brain-Machine Interface, CRISPR, cyborg, genome editing

Abstract

Transhumanism looks to utilise science and technology to move humans beyond the limitations of their natural form. Recent scientific advances have, for the first time, presented plausible genetic interventions for the directed evolution of humans. In separate developments, electromechanical innovations, including miniaturisation of components and improvements in bio-compatible materials, have seen breakthroughs in brain-machine interfaces (BMIs) that potentiate a cybernetic dimension, in which mechanical devices would be under the direct control of the mind. This article offers insight into the most important of these recent advances, with particular emphasis on genome editing and therapeutic uses of BMIs in which the same technology might be employed for enhancement.

Downloads

Download data is not yet available.

Author Biography

Chris Willmott, University of Leicester (UK).

Associate Professor in the Department of Molecular and Cell Biology at the University of Leicester (UK). He has conducted research on antibiotic resistance. His current work focuses primarily on Bioethics, pedagogy, and the representation of Science in the Media.

References

Begley, S. (2017, August 10). Birth of CRISPR’d pigs advances hopes for turning swine into organ donors. STAT. https://www.statnews.com/2017/08/10/crispr-pigs-organ-transplant

Brooks, R. (2017). The seven deadly sins of AI predictions. MIT Technology Review, 120(6), 79–86. https://www.technologyreview.com/2017/10/06/241837/the-seven-deadly-sins-of-ai-predictions

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., McMorland, A. J. C., Velliste, M., Boninger, M. L., & Schwartz, A. B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet, 381(9866), 557–564. https://doi.org/10.1016/S0140-6736(12)61816-9

Corbyn, Z. (2019, September 22). Are brain implants the future of thinking? The Guardian. https://www.theguardian.com/science/2019/sep/22/brain-computer-interface-implants-neuralink-braingate-elon-musk

Flesher, S. N., Collinger, J. L., Foldes, S. T., Weiss, J. M., Downey, J. E., Tyler-Kabara, E. C., Bensmaia, S. J., Schwartz, A. B., Boninger, M. L., & Gaunt, R. A. (2016). Intracortical microstimulation of human somatosensory cortex. Science Translational Medicine, 8(361), 361ra141. https://doi.org/10.1126/scitranslmed.aaf8083

Gaj, T., Gersbach, C. A., & Barbas III, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

Giger, J. C., Piçarra, N., Alves‐Oliveira, P., Oliveira, R., & Arriaga, P. (2019). Humanization of robots: Is it really such a good idea? Human Behavior and Emerging Technologies, 1(2), 111–123. https://doi.org/10.1002/hbe2.147

Lebedev, M. A., Opris, I., & Casanova, M. F. (2018). Augmentation of brain function: Facts, fiction and controversy. Frontiers in Systems Neuroscience, 12, 45. https://doi.org/10.3389/fnsys.2018.00045

Platt, R. J. (2019). CRISPR tool enables precise genome editing. Nature, 576, 48–49. https://doi.org/10.1038/d41586-019-03392-9

Polikov, V. S., Tresco, P. A., & Reichert, W. M. (2005). Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods, 148(1), 1–18. https://doi.org/10.1016/j.jneumeth.2005.08.015

Rauti, R., Musto, M., Bosi, S., Prato, M. & Ballerini, L. (2019). Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon, 143, 430–446. https://doi.org/10.1016/j.carbon.2018.11.026

Regalado, A. (2019, December 30). He Jiankui faces three years in prison for CRISPR babies. MIT Technology Review. https://www.technologyreview.com/2019/12/30/131061/he-jiankui-sentenced-to-three-years-in-prison-for-crispr-babies

Roelfsema, R., Denys, D., & Klink, P. C. (2018). Mind reading and writing: The future of neurotechnology. Trends in Cognitive Sciences, 22(7), 598–610. https://doi.org/10.1016/j.tics.2018.04.001

Salas, M. A., Bashford, L., Kellis, S., Jafari, M., Jo, H. C., Kramer, D., Shanfield, K., Pejsa, K., Lee, B., Liu, C. Y., & Andersen, R. A. (2018). Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. eLife, 7, e32904. https://doi.org/10.7554/eLife.32904

Shook, J. R., & Giordano, J. (2016). Neuroethics beyond normal: Performance enablement and self-transformative technologies. Cambridge Quarterly of Healthcare Ethics, 25(1), 121–140. https://doi.org/10.1017/S0963180115000377

Tirosh-Samuelson, H. (2018). In pursuit of perfection: The misguided transhumanist vision. Theology and Science, 16(2), 200–222. https://doi.org/10.1080/14746700.2018.1463659

Waldert, S. (2016). Invasive vs. non-invasive neuronal signals for brain-machine interfaces: Will one prevail? Frontiers in Neuroscience, 10, 295. https://doi.org/10.3389/fnins.2016.00295

Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166), 80–84. https://doi.org/10.1126/science.1246981

Yazdi, P. (2020, September 22). 13 effects of transcranial direct current stimulation (tDCS). SelfHacked. https://selfhacked.com/blog/tdcs-benefits

Downloads

Additional Files

Published

2022-02-02

How to Cite

Willmott, C. (2022). The science of transhumanism: Are we nearly there?. Metode Science Studies Journal, (12), 161–167. https://doi.org/10.7203/metode.12.20710
Metrics
Views/Downloads
  • Abstract
    1495
  • (Español)
    6
  • PDF
    921

Issue

Section

Transhumanism. Beyond the body

Metrics

Similar Articles

> >> 

You may also start an advanced similarity search for this article.