Fundamentals of the Design of a Technological Environment for the Study of the Problem-Solving Habilities in Early Childhood

Authors

  • Pascual D. Diago Universitat de València (Spain)
  • José A. González-Calero Universidad de Castilla – La Mancha
  • David Arnau Universitat de València

DOI:

https://doi.org/10.7203/realia.22.14113

Keywords:

Technological Environments, Problem Solving, Early School Ages, Learning Analytics

Abstract

In this paper we present the fundamentals of software design capable of monitoring and recording data related to the management of mathematical problem solving processes. The software allows a systematic collection of the variables of the resolution process from which it is possible to obtain different student learning analytics. By not focusing exclusively on the final outcome of the resolution process, it is possible to identify cognitive tendencies of the students. In this manuscript we describe the characteristics of this technological environment together with the didactic basis that justifies the interest of research at school levels in which poor knowledge limits the formalization of problem solving situations. The first results of a pilot study that has allowed the evaluation of strengths and weaknesses of the developing version are attached. Finally, future directions for this technological environment are discussed as one more step in both innovation and research in Mathematics Education.

Downloads

Download data is not yet available.

Author Biography

Pascual D. Diago, Universitat de València (Spain)

Pascual D. Diago (Pascual.Diago@uv.es) Departament de Didàctica de la Matemàtica Facultat de Magisteri - Campus de Tarongers Avda. Tarongers, 4, 46022 València (SPAIN) Telf.: 963 983 293 - Ext.: 83293

References

Arnau, D., Arevalillo-Herráez, M., Puig, L., y González-Calero, J. (2013). Fundamentals of the design and the operation of an intelligent tutoring system for the learning of the arithmetical and algebraic way of solving word problems. Computers and Education63, 119–130. https://doi.org/10.1016/j.compedu.2012.11.020

Beal, C. (2013). AnimalWatch: An intelligent tutoring system for algebra readiness. En R. Azevedo y V. Aleven (Eds.), International Handbook of Metacognition and Learning Technologies. Springer International Handbooks of Education (Vol. 28, pp. 337–348). New York: Springer. https://doi.org/10.1007/978-1-4419-5546-3_22

Beatty, R., y Geiger, V. (2010). Technology, Communication, and Collaboration: Re-thinking Communities of Inquiry, Learning and Practice. En C. Hoyles y J. Lagrange (Eds.), Mathematics Education and Technology-Rethinking the Terrain(New ICMI Study Series ed., Vol. 13, pp. 251–284). Boston: Springer. http://doi.org/10.1007/978-1-4419-0146-0

Bers, M. U., Flannery, L., Kazakoff, E. R., y Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education72, 145–157. https://doi.org/10.1016/j.compedu.2013.10.020

Bers, M. U., Seddighin, S., y Sullivan, A. (2013). Ready for Robotics: Bringing Together the T and E of STEM in Early Childhood Teacher Education. Journal of Technology and Teacher Education21(3), 355–377.

Bienkowski, M., Feng, M., y Means, B. (2012). Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief (U. D. of Education, Ed.). Descargado de https://tech.ed.gov/wp-content/uploads/2014/03/edm-la-brief.pdf

Brownell, W. A. (1942). Problem Solving. En B. Henry (Ed.), The forty-first yearboo National Society for the Study of Education: Part 2, The psychology of learning Chicago: University of Chicago Press.

Caballé, S., y Clarisó, R. (Eds.). (2016).Formative Assessment, Learning Data Analytics and Gamification in ICT Education. London: UK: Academic Press. https://doi.org/10.1016/C2015-0-00087-9

Chang, K. E., Sung, Y. T., y Lin, S. F. (2006). Computer-assisted learning for mathematical problem solving. Computers and Education46(2), 140–151. https://doi.org/10.1016/j.compedu.2004.08.002

Chao, P. Y. (2016). Exploring students’ computational practice, design and performance of problem-solving through a visual programming environment. Computers and Education95, 202–2015. https://doi.org/10.1016/j.compedu.2016.01.010

Clements, D. H. (1986). Logo and cognition: A theoretical foundation. Computers in Human Behavior2, 95–110.

Coxon, S. V. (2012). The malleability of spatial ability under treatment of a FIRST LEGO league-based robotics simulation. Journal for the Education of the Gifted35(3), 291–316. https://doi.org/10.1177/0162353212451788

Diago, P. D., Arnau, D., y González-Calero, J. A. (2018a). Desarrollo del pensamiento computacional en Educación Infantil mediante la resolución de problemas en entornos tecnológicos. En R. Cózar y J. A. González-Calero (Eds.), Tendencias y tecnologías emergentes en investigación e innovación educativa (pp. 197–214). Barcelona: Editorial GRAÓ.

Diago, P. D., Arnau, D., y González-Calero, J. A. (2018b). Elementos de resolución de problemas en primeras edades escolares con Bee-bot. Edma 0-6: Educación Matemática en la Infancia(1), 12–41. Descargado de http://www.edma0-6.es/index.php/edma0-6/article/view/49

Diago, P. D., Arnau, D., y González-Calero, J. A. (2018c). La resolución de problemas matemáticos en primeras edades escolares con Bee-bot. Matemáticas, Educación y Sociedad1(2), 36–50.

Drachsler, H., y Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): A reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning,32(3), 281–290. https://doi.org/10.1111/jcal.12135

Drijvers, P., Kieran, C., Mariotti, M. A., Ainley, J., Andresen, M., Cheung, Y., … Meagher, M. (2010). Integrating Technology into Mathematics Education: Theoretical Perspectives. En C. Hoyles y J. Lagrange (Eds.), Mathematics Education and Technology. Rethinking the Terrain (Vol. 13, pp. 89–132). Boston: Springer.https://doi.org/10.1007/978-1-4419-0146-0_7

Freeman, A., Adams-Becker, S., Cummins, M., Davis, A., y Hall-Giesinger, C. (2017). NMC/CoSN Horizon Report:2017 K-12 Edition. Austin, Texas: The New Media Consortium. Descargado de http://doi.org/978-0-9988650-3-4

Fuglestad, A., Healy, L., Kynigos, C., y Monaghan, J. (2010). Working with Teachers: Context and Culture. En C. Hoyles y J. Lagrange (Eds.), Mathematics Education and Technology. Rethinking the Terrain (pp. 293–310). New York: Springer. http://doi.org/10.1007/978-1-4419-0146-0

Gaudiello, I., y Zibetti, E. (2016). Learning Robotics: Users’ Representation of Robots. En I. Gaudiello y E. Zibetti (Eds.), Learning Robotics, with Robotics, by Robotics: Educational Robotics (Vol. 3, pp. 1–41). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119335740.ch1

González-Calero, J. A., Cózar, R., Villena, R., y Merino, J. M. (2018). The development of mental rotation abilities through robotics-based instruction: An experience mediated by gender. British Journal of Educational TechnologyAdvance Online Publication, 1–16.https://doi.org/10.1111/bjet.12726

Grover, S., Pea, R., y Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education25(2), 199–237. https://doi.org/10.1080/08993408.2015.1033142

Heffernan, N. T., y Koedinger, K. R. (2000). Intelligent tutoring systems are missing the tutor: building a more strategic dialog-based tutor. En C. Rose y R. Freedman (Eds.), Building dialogue systems for tutorial applications; papers of the 2000 AAAI fall symposium (pp. 14–19). AAAI Press: Menlo Park. Descargado de http://pact.cs.cmu.edu/koedinger/pubs/Heffernan%20&%20Koedinger%2000.pdf

Hitt, F., Saboya, M., y Cortés, C. (2017). Task design in a paper and pencil and technological environment to promote inclusive learning: An example with polygonal numbers. En F. Aldon, F. Hitt, L. Bazzini, y U. Gellert (Eds.), Mathematics and Technology (pp. 13–30). Cham, Switzerland: Springer International Publishing. Descargado de https://doi.org/10.1007/978-3-319-51380-5

Hoyles, C., y Lagrange, J. (Eds.). (2010).Mathematics Education and Technology-Rethinking the Terrain: The 17th ICMI Study. New York: Springer. 10.1007/978-1-4419-0146-0

Julià, C., y Antolí, J. (2018). Enhancing spatial ability and mechanical reasoning through a STEM course. International Journal of Technology and Design Education28(4), 957–983. https://doi.org/10.1007/s10798-017-9428-x

Kilpatrick, J. (1978). Variables and Methodologies in Research on Problem Solving. En L. L. Hatfield y D. A. Bradbard (Eds.), Mathematical Problem Solving: Papers from a Research Workshop (pp. 7–20). Columbus, Ohio: ERIC/SMEAC.

Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching mathematical problem solving. En E. A. Silver (Ed.), Teaching and Learning Mathematical Problem Solving. Multiple Research Perspectives (pp. 1–15). Mahwah, NJ: Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203063545

Mah, D. (2016). Learning Analytics and Digital Badges: Potential Impact on Student Retention in Higher Education. Technology, Knowledge and Learning,21(3), 285–305. http://dx.doi.org/10.1007/s10758-016-9286-8

McArthur, D. J., y Lewis, M. W. (1998). Untangling the Web: Applications of the internet and other information technologies to higher education. Santa Monica, CA: RAND Corporation.

Nathan, M. J. (1998). Knowledge and situational feedback in a learning environment for algebra story problem solving. Interactive Learning Environments5(1), 135–159. https://doi.org/10.1080/1049482980050110

NCTM. (2000). National Council of Teachers of Mathematics. Reston, VA: National Council of Teachers of Mathematics.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York: Basic Books Publishers.

Papert, S. (1991). Situating constructionism. En S. Papert y I. Harel (Eds.), Constructionism (pp. 1–11). Norwood, NJ: Ablex. Descargado de http://www.papert.org/articles/SituatingConstructionism.html

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Computers for Mathematical Learning,1(1), 95–123. Descargado de http://www.papert.org/articles/AnExplorationintheSpaceofMathematicsEducations.html

Pólya, G. (1945). How to Solve It. A New Aspect of Mathematical Method. Princeton, NJ: Princeton University Press.

Rakes, C. R., Valentine, J. C., McGatha, M. B., y Ronau, R. N. (2010). Methods of Instructional Improvement in Algebra. Review of Educational Research80(3), 372–400. Descargado de https://www.jstor.org/stable/40927286

Reusser, K. (1993). Tutoring systems and pedagogical theory: representational tools for understanding, planning, and reflection in problem solving. En S. Lajoie y S. Derry (Eds.), Computers as cognitive tools (pp. 143–177). Hillsdale, NJ: Lawrence Erlbaum Associates.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. En D. A. Grouws (Ed.),Handbook of research on mathematics teaching and learning. A Project of the National Council of Teachers of Mathematics (pp. 334–370). Reston, VA: National Council of Teachers of Mathematics.

Shute V. J., Sun, C., y Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review22, 142–158.https://doi.org/10.1016/j.edurev.2017.09.003

Viberg, O., Hatakka, M., Bälter, O., y Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior89 , 98–110. https://doi.org/10.1016/j.chb.2018.07.027

Weber, K., y Leikin, R. (2016). Recent advances in research on problem solving and problem posing. En A. Gutiérrez, G. Leder, y P. Boero (Eds.), The Second Handbook of Research on the Psychology of Mathematics Education (pp. 353–382). Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6300-561-6_10

Weintrop, D., y Wilensky, U. (2015). To Block or not to Block, That is the Question: Students’Perceptions of Blocks-based Programming. Proceedings of IDC 2015: The 14thn Design and Children (pp. 199–208). Association for Computing Machinery, Inc. Descargado de https://doi.org/10.1145/2771839.2771860

Published

2019-06-24

How to Cite

Diago, P. D., González-Calero, J. A., & Arnau, D. (2019). Fundamentals of the Design of a Technological Environment for the Study of the Problem-Solving Habilities in Early Childhood. Research in Education and Learning Innovation Archives, (22), 58–76. https://doi.org/10.7203/realia.22.14113
Metrics
Views/Downloads
  • Abstract
    1335
  • PDF (Español)
    545
  • XML (Español)
    109
  • EPUB (Español)
    258
  • HTML (Español)
    242

Issue

Section

THEMATIC ISSUES

Metrics

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.