Using Immersive Virtual Reality in the classroom: a meta-analysis
DOI:
https://doi.org/10.7203/realia.29.21488Keywords:
virtual reality, learning, educational innovation, meta-analysis, ICTAbstract
Although the first designs of devices for accessing computer-generated virtual worlds date back over half a century, two factors needed to come together to create the explosion of Virtual- Reality-related projects we have seen in recent years. The first was the progressive increase in the computing power of general-purpose computers. The second was the reduction in the cost of de- vices needed to access this technology. In this paper we conduct a meta-analysis of 15 educational projects that employed Immersive Virtual Reality technology in the classroom between 2015 and 2020. For this analysis we examined variables such as the projects’ objectives, the educational sta- ges and courses in which they were used, their subject matter, and the software and type of devices employed. Our results show that most of these projects were conducted in 2020 and that the aims of the projects were to develop students’ interest in a field of knowledge or to analyse their effective- ness in enabling students’ acquisition of concepts. We also found that secondary education was the educational stage at which most initiatives were developed and that low-cost devices such as Google Cardboard were mainly used. However, this homogeneity in hardware was not reciprocated when it came to software, which was much more fragmented. The latter result highlights the difficulties teachers may have when selecting suitable tools for initiatives involving Immersive Virtual Reality
Downloads
References
Astuti, T. N., Sugiyarto, K. H., y Ikhsan, J. (2020). Effect of 3D visualization on students’ critical thinking skills and scientific attitude in chemistry. International Journal of Instruction, 13(1), 151–164. Descargado de http://files.eric.ed.gov/fulltext/EJ1239288.pdf
Boda, P. A., y Brown, B. (2020). Priming urban learners’ attitudes toward the relevancy of science: A mixed-methods study testing the importance of context. Journal of Research in Science Teaching, 57 (4), 567–596. ttps://doi.org/10.1002/tea.21604
Chang, Y. (2020). Influence of virtual reality on engineering design creativity. Educational Studies. https://doi.org/10.1080/03055698.2020.1754767
Cheng, K., y Tsai, C. (2020). Students’ motivational beliefs and strategies, perceived immersion and attitudes towards science learning with immersive virtual reality: A partial least squares analysis. British Journal of Educational Technology. http:// dx.doi.org/10.1111/bjet.12956
Conn, C., Lanier, J., Minsky, M., Fisher, S., y Druin, A. (1989). Virtual environments and interactivity: Windows to the future. ACM Siggraph Computer Graphics, 23(5), 7–18. https://doi.org/10.1145/77277.77278
Demitriadou, E., Stavroulia, K., y Lanitis, A. (2020). Comparative evaluation of virtual and augmented reality for teaching mathematics in primary education. Education and Information Technologies, 25(1), 381–401. https://doi.org/10.1007/s10639-019-09973-5
Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5, 3–8. https://doi.org/10.3102/0013189X005010003
González, J., y Balaguer, A. (2007). Revisión sistemática y metanálisis (I): conceptos básicos. Evidencias en Pediatría, 3, 107–107. https://evidenciasenpediatria.es/articulo/5204/ revision-sistematica-y-metaanalisis-i-conceptos-basicos
Han, I. (2020). Immersive virtual field trips and elementary students’ perceptions. British Journal of Educational Technology, 52(1). https://doi.org/10.1111/bjet.12946
Hsu, Y. (2020). Exploring the Learning Motivation and Effectiveness of Applying Virtual Reality to High School Mathematics. Universal Journal of Educational Research, 8(2), 438–444. https://doi.org/10.13189/ujer.2020.080214
Jitmahantakul, S., y Chenrai, P. (2019). Applying virtual reality technology to geoscience classrooms. Review of International Geographical Education Online, 9(3), 577–590. Descargado de http://files.eric.ed.gov/fulltext/EJ1244538.pdf
Jong, M. S., Tsai, C., Xie, H., y Wong, F. K.-K. (2020). Integrating interactive learner-immersed video-based virtual reality into learning and teaching of physical geography. British Journal of Educational Technology. https://doi.org/10.1111/bjet.12947
Kolomaznika, M., Sullivana, M., y Vyvyana, K. (2017). Can Virtual Reality Engage Students With Teamwork? International Journal of Innovation in Science and Mathematics Education, 25(4), 32–44. Descargado de https://openjournals.library.sydney.edu.au/ index.php/CAL/article/view/12172
Makransky, G., Petersen, G. B., y Klingenberg, S. (2020). Can an immersive virtual reality simulation increase students’ interest and career aspirations in science? British Journal of Educational Technology, 51(6). https://doi.org/10.1111/bjet.12954
Marín-Díaz, V., Morales-Díaz, M., y Reche-Urbano, E. (2019). Educational Possibilities of Video Games in the Primary Education Stage According to Teachers in Training. A Case Study. Journal of New Approaches in Educational Research, 8(1), 42–49. https:// doi.org/10.7821/naer.2019.1.330
Mcfaul, H., y Fitzgerald, E. (2020). A realist evaluation of student use of a virtual reality smartphone application in undergraduate legal education. British Journal of Educational Technology, 51(2), 572–589. https://doi.org/10.1111/bjet.12850
Osuna, J. B., Gutiérrez-Castillo, J., Llorente-Cejudo, M., y Ortiz, R. V. (2019). Difficulties in the Incorporation of Augmented Reality in University Education: Visions from the Experts. Journal of New Approaches in Educational Research, 8(2), 126–141. https:// doi.org/10.7821/naer.2019.7.409
Pérez, M. D. M., Duque, A. G., y García, L. (2018). Game-Based Learning: Increasing the Logical-Mathematical, Naturalistic, and Linguistic Learning Levels of Primary School Students. Journal of New Approaches in Educational Research, 7 (1), 31–39. https:// doi.org/10.7821/naer.2018.1.248
Rupp, M. A., Kozachuk, J., Michaelis, J. R., Odette, K. L., Smither, J. A., y McConnell, D. S. (2016). The effects of immersiveness and future VR expectations on subjective- experiences during an educational 360◦ video. Proceedings of the Human Factors and Ergonomics Society, 60(1), 2101–2105. https://doi.org/10.1177/1541931213601477
Shackelford, L., Huang, W. D., Craig, A., Merrill, C., y Chen, D. (2019). Relationships between motivational support and game features in a game-based virtual reality learning environment for teaching introductory archaeology. Educational Media International, 56(3), 183–200. https://doi.org/10.1080/09523987.2019.1669946
Sheridan, T. B. (1992). Musings on telepresence and virtual presence. Presence: Teleoperators & Virtual Environments, 1(1), 120–126. http://dx.doi.org/10.1162/pres.1992.1.1.120
Sutherland, I. (1965). The Ultimate Display. Proceedings IFIP Congress (pp. 506–508). Descargado de http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.3720
Sutherland, I. (1968). A Head-Mounted Three Dimensional Display. Proceedings of the Fall Joint Computer Conference, AFIPS Conference Proceedings, 33, 757–764. https://doi.org/ 10.1145/1476589.1476686
Witmer, B. G., y Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and virtual environments, 7 (3), 225–240. https:// doi.org/10.1162/105474698565686
Woletz, J. (2018). Interfaces of Immersive Media. Interface Critique Journal, 1. Descargado de https://interfacecritique.net/journal/volume-1/woletz-interfaces-of-immersive-media/
Wu, B., Yu, X., y Gu, X. (2020). Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. British Journal of Educational Technology, 51(6), 1991–2005. https://doi.org/10.1111/bjet.13023
Yepes-Nuñez, J. J., Urrútia, G., Romero-García, M., y Alonso-Fernández, S. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. [Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas]. Revista Espanola De Cardiologia, 74(9), 790–799. https://doi.org/10.1016/ j.recesp.2021.06.016
Zhao, J., Lin, L., Sun, J., y Liao, Y. (2020). Using the summarizing strategy to engage learners: Empirical evidence in an immersive virtual reality environment. Asia-Pacific Education Researcher, 29(5), 473–482. https://doi.org/10.1007/s40299-020-00499-w
Downloads
Published
How to Cite
-
Abstract1764
-
PDF (Español)1041
-
EPUB (Español)438
-
HTML (Español)868
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- The Universitat de València is the editor of Research in Education and Learning Innovation Archives (REALIA) and retains the copyright of all that is published in the journal, while it allows and favours reuse under a copyleft license.
- The originals published in this journal are – unless otherwise specified – under a Creative Commons License: Attribution-NonComercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Research in Education and Learning Innovation Archives (REALIA) encourages authors to disseminate and give visibility to their research published in this journal. For this, REALIA wishes to inform that:
- Authors retain copyright and grant the journal right of first publication.
- The work is simultaneously licensed under a Creative Commons Attribution License: Attribution-NonComercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
- Self-archive: Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) to promote greater visibility and citation, with an acknowledgement of its first publication in this journal.