Fonaments de disseny d'un entorn tecnològic per a l'estudi de les habilitats en resolució de problemes en primeres edats escolars
DOI:
https://doi.org/10.7203/realia.22.14113Paraules clau:
Entornos Tecnológicos, Resolución de problemas, Primeras edades escolares, Métricas de aprendizajeResum
En aquest treball es presenten els fonaments de disseny d'un programari capaç de monitorizar i registrar dades referents a la gestió de processos de resolució de problemes matemàtics. El programari permet una recollida sistemàtica de les variables del procés de resolució a partir de les quals és possible obtenir diferents mètriques d'aprenentatge de l'estudiant. Al no centrar l'atenció exclusivament en el resultat final del procés de resolució, és possible identificar tendències cognitives dels estudiants. En aquest manuscrit descrivim les característiques d'aquest entorn tecnològic juntament amb la base didàctica que justifica l'interès de la recerca en nivells escolars en els quals l'escàs coneixement limita la formalització de situacions de resolució de problemes. S'adjunten els primers resultats d'un estudi pilot que ha permès avaluar fortaleses i debilitats de la versió en desenvolupament. Finalment, es discuteix sobre futures adreces per a aquest entorn tecnològic com un pas més tant en innovació com en recerca en Educació Matemàtica.
Descàrregues
Referències
Arnau, D., Arevalillo-Herráez, M., Puig, L., y González-Calero, J. (2013). Fundamentals of the design and the operation of an intelligent tutoring system for the learning of the arithmetical and algebraic way of solving word problems. Computers and Education, 63, 119–130. https://doi.org/10.1016/j.compedu.2012.11.020
Beal, C. (2013). AnimalWatch: An intelligent tutoring system for algebra readiness. En R. Azevedo y V. Aleven (Eds.), International Handbook of Metacognition and Learning Technologies. Springer International Handbooks of Education (Vol. 28, pp. 337–348). New York: Springer. https://doi.org/10.1007/978-1-4419-5546-3_22
Beatty, R., y Geiger, V. (2010). Technology, Communication, and Collaboration: Re-thinking Communities of Inquiry, Learning and Practice. En C. Hoyles y J. Lagrange (Eds.), Mathematics Education and Technology-Rethinking the Terrain(New ICMI Study Series ed., Vol. 13, pp. 251–284). Boston: Springer. http://doi.org/10.1007/978-1-4419-0146-0
Bers, M. U., Flannery, L., Kazakoff, E. R., y Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145–157. https://doi.org/10.1016/j.compedu.2013.10.020
Bers, M. U., Seddighin, S., y Sullivan, A. (2013). Ready for Robotics: Bringing Together the T and E of STEM in Early Childhood Teacher Education. Journal of Technology and Teacher Education, 21(3), 355–377.
Bienkowski, M., Feng, M., y Means, B. (2012). Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief (U. D. of Education, Ed.). Descargado de https://tech.ed.gov/wp-content/uploads/2014/03/edm-la-brief.pdf
Brownell, W. A. (1942). Problem Solving. En B. Henry (Ed.), The forty-first yearboo National Society for the Study of Education: Part 2, The psychology of learning Chicago: University of Chicago Press.
Caballé, S., y Clarisó, R. (Eds.). (2016).Formative Assessment, Learning Data Analytics and Gamification in ICT Education. London: UK: Academic Press. https://doi.org/10.1016/C2015-0-00087-9
Chang, K. E., Sung, Y. T., y Lin, S. F. (2006). Computer-assisted learning for mathematical problem solving. Computers and Education, 46(2), 140–151. https://doi.org/10.1016/j.compedu.2004.08.002
Chao, P. Y. (2016). Exploring students’ computational practice, design and performance of problem-solving through a visual programming environment. Computers and Education, 95, 202–2015. https://doi.org/10.1016/j.compedu.2016.01.010
Clements, D. H. (1986). Logo and cognition: A theoretical foundation. Computers in Human Behavior, 2, 95–110.
Coxon, S. V. (2012). The malleability of spatial ability under treatment of a FIRST LEGO league-based robotics simulation. Journal for the Education of the Gifted, 35(3), 291–316. https://doi.org/10.1177/0162353212451788
Diago, P. D., Arnau, D., y González-Calero, J. A. (2018a). Desarrollo del pensamiento computacional en Educación Infantil mediante la resolución de problemas en entornos tecnológicos. En R. Cózar y J. A. González-Calero (Eds.), Tendencias y tecnologías emergentes en investigación e innovación educativa (pp. 197–214). Barcelona: Editorial GRAÓ.
Diago, P. D., Arnau, D., y González-Calero, J. A. (2018b). Elementos de resolución de problemas en primeras edades escolares con Bee-bot. Edma 0-6: Educación Matemática en la Infancia, 7 (1), 12–41. Descargado de http://www.edma0-6.es/index.php/edma0-6/article/view/49
Diago, P. D., Arnau, D., y González-Calero, J. A. (2018c). La resolución de problemas matemáticos en primeras edades escolares con Bee-bot. Matemáticas, Educación y Sociedad, 1(2), 36–50.
Drachsler, H., y Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): A reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning,32(3), 281–290. https://doi.org/10.1111/jcal.12135
Drijvers, P., Kieran, C., Mariotti, M. A., Ainley, J., Andresen, M., Cheung, Y., … Meagher, M. (2010). Integrating Technology into Mathematics Education: Theoretical Perspectives. En C. Hoyles y J. Lagrange (Eds.), Mathematics Education and Technology. Rethinking the Terrain (Vol. 13, pp. 89–132). Boston: Springer.https://doi.org/10.1007/978-1-4419-0146-0_7
Freeman, A., Adams-Becker, S., Cummins, M., Davis, A., y Hall-Giesinger, C. (2017). NMC/CoSN Horizon Report:2017 K-12 Edition. Austin, Texas: The New Media Consortium. Descargado de http://doi.org/978-0-9988650-3-4
Fuglestad, A., Healy, L., Kynigos, C., y Monaghan, J. (2010). Working with Teachers: Context and Culture. En C. Hoyles y J. Lagrange (Eds.), Mathematics Education and Technology. Rethinking the Terrain (pp. 293–310). New York: Springer. http://doi.org/10.1007/978-1-4419-0146-0
Gaudiello, I., y Zibetti, E. (2016). Learning Robotics: Users’ Representation of Robots. En I. Gaudiello y E. Zibetti (Eds.), Learning Robotics, with Robotics, by Robotics: Educational Robotics (Vol. 3, pp. 1–41). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119335740.ch1
González-Calero, J. A., Cózar, R., Villena, R., y Merino, J. M. (2018). The development of mental rotation abilities through robotics-based instruction: An experience mediated by gender. British Journal of Educational Technology, Advance Online Publication, 1–16.https://doi.org/10.1111/bjet.12726
Grover, S., Pea, R., y Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education, 25(2), 199–237. https://doi.org/10.1080/08993408.2015.1033142
Heffernan, N. T., y Koedinger, K. R. (2000). Intelligent tutoring systems are missing the tutor: building a more strategic dialog-based tutor. En C. Rose y R. Freedman (Eds.), Building dialogue systems for tutorial applications; papers of the 2000 AAAI fall symposium (pp. 14–19). AAAI Press: Menlo Park. Descargado de http://pact.cs.cmu.edu/koedinger/pubs/Heffernan%20&%20Koedinger%2000.pdf
Hitt, F., Saboya, M., y Cortés, C. (2017). Task design in a paper and pencil and technological environment to promote inclusive learning: An example with polygonal numbers. En F. Aldon, F. Hitt, L. Bazzini, y U. Gellert (Eds.), Mathematics and Technology (pp. 13–30). Cham, Switzerland: Springer International Publishing. Descargado de https://doi.org/10.1007/978-3-319-51380-5
Hoyles, C., y Lagrange, J. (Eds.). (2010).Mathematics Education and Technology-Rethinking the Terrain: The 17th ICMI Study. New York: Springer. 10.1007/978-1-4419-0146-0
Julià, C., y Antolí, J. (2018). Enhancing spatial ability and mechanical reasoning through a STEM course. International Journal of Technology and Design Education, 28(4), 957–983. https://doi.org/10.1007/s10798-017-9428-x
Kilpatrick, J. (1978). Variables and Methodologies in Research on Problem Solving. En L. L. Hatfield y D. A. Bradbard (Eds.), Mathematical Problem Solving: Papers from a Research Workshop (pp. 7–20). Columbus, Ohio: ERIC/SMEAC.
Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching mathematical problem solving. En E. A. Silver (Ed.), Teaching and Learning Mathematical Problem Solving. Multiple Research Perspectives (pp. 1–15). Mahwah, NJ: Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203063545
Mah, D. (2016). Learning Analytics and Digital Badges: Potential Impact on Student Retention in Higher Education. Technology, Knowledge and Learning,21(3), 285–305. http://dx.doi.org/10.1007/s10758-016-9286-8
McArthur, D. J., y Lewis, M. W. (1998). Untangling the Web: Applications of the internet and other information technologies to higher education. Santa Monica, CA: RAND Corporation.
Nathan, M. J. (1998). Knowledge and situational feedback in a learning environment for algebra story problem solving. Interactive Learning Environments, 5(1), 135–159. https://doi.org/10.1080/1049482980050110
NCTM. (2000). National Council of Teachers of Mathematics. Reston, VA: National Council of Teachers of Mathematics.
Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York: Basic Books Publishers.
Papert, S. (1991). Situating constructionism. En S. Papert y I. Harel (Eds.), Constructionism (pp. 1–11). Norwood, NJ: Ablex. Descargado de http://www.papert.org/articles/SituatingConstructionism.html
Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Computers for Mathematical Learning,1(1), 95–123. Descargado de http://www.papert.org/articles/AnExplorationintheSpaceofMathematicsEducations.html
Pólya, G. (1945). How to Solve It. A New Aspect of Mathematical Method. Princeton, NJ: Princeton University Press.
Rakes, C. R., Valentine, J. C., McGatha, M. B., y Ronau, R. N. (2010). Methods of Instructional Improvement in Algebra. Review of Educational Research, 80(3), 372–400. Descargado de https://www.jstor.org/stable/40927286
Reusser, K. (1993). Tutoring systems and pedagogical theory: representational tools for understanding, planning, and reflection in problem solving. En S. Lajoie y S. Derry (Eds.), Computers as cognitive tools (pp. 143–177). Hillsdale, NJ: Lawrence Erlbaum Associates.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. En D. A. Grouws (Ed.),Handbook of research on mathematics teaching and learning. A Project of the National Council of Teachers of Mathematics (pp. 334–370). Reston, VA: National Council of Teachers of Mathematics.
Shute V. J., Sun, C., y Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158.https://doi.org/10.1016/j.edurev.2017.09.003
Viberg, O., Hatakka, M., Bälter, O., y Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89 , 98–110. https://doi.org/10.1016/j.chb.2018.07.027
Weber, K., y Leikin, R. (2016). Recent advances in research on problem solving and problem posing. En A. Gutiérrez, G. Leder, y P. Boero (Eds.), The Second Handbook of Research on the Psychology of Mathematics Education (pp. 353–382). Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6300-561-6_10
Weintrop, D., y Wilensky, U. (2015). To Block or not to Block, That is the Question: Students’Perceptions of Blocks-based Programming. Proceedings of IDC 2015: The 14thn Design and Children (pp. 199–208). Association for Computing Machinery, Inc. Descargado de https://doi.org/10.1145/2771839.2771860
Descàrregues
Publicades
Com citar
-
Resum1385
-
PDF (Español)553
-
XML (Español)111
-
EPUB (Español)259
-
HTML (Español)244
Número
Secció
Llicència
Els articles publicats en aquesta revista estan subjectes als termes següents:
1. La Universitat de València és l’editora de Research in Education and Learning Innovation Archives. La revista conserva els drets patrimonials (copyright) del que es publica en la revista, si bé permet i propicia la reutilització d’aquests escrits sota una llicència copyleft.
2. Els textos publicats en aquesta revista estan –si no s’indica el contrari– sota una llicencia Reconeixement-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0).
La revista anima els seus autors a difondre i donar major visibilitat a les recerques que publique en Research in Education and Learning Innovation Archives, de manera que els informa que en publicar amb nosaltres:
- L’autor conserva els drets d’autor encara que cedeix a la revista el dret de la primera publicació.
- El treball es publica amb una llicencia Reconeixement-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0).
- Autoarxiu: s’autoritza i recomana als autors difondre el seu treball en Internet en repositoris institucionals i altres pàgines personals o institucionals, per afavorir la seua visibilitat i citació, sempre indicant clarament que el treball es va publicar per primera vegada en aquesta revista.